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Abstract: In this paper, we propose a switching state feedback control algorithm for a class
of non-holonomic symmetric affine systems with multi-generators. The controllability Lie
algebra of a multi-generator system is structurally different from that of single-generator
systems, such as conventional chained form systems. A multi-generator dynamics is partially
considered a single-generator system and each subsystem can be stabilized by any existing
controller proposed for chained systems. We propose a switching control algorithm, in that
each generator is chosen in sequence and corresponding sub-controllers are applied, where
each sub-controller is designed by existing methods for chained systems. The efficiency of
the proposed strategy is evaluated via humerical simulat@ogyright(©2002 IFAC

Keywords: Stabilizability, Non-stabilizable systems, Non-holonomic Systems,
Discontinuous control, Switching algorithm

1. INTRODUCTION that each generator is chosen by turns and correspond-
ing sub-controllers are applied. Each sub-controller

Recently, symmetric affine systems (or driftless sys- d€sign is based on existing Astolfi's and Sampei's

tems) have been recognized a fundamental platformdesign method proposed for chained systems. At the
of so-called non-holonomic systems. Roughly speak- last section, the efﬂqency of thg proposed strategy is
ing, there are two reasons behind: one is that non-€valuated via numerical simulations.

holonomic kinematic constraints can be categorized
into this class, and the other is that they violate Brock-

ett's necessary condition(Brockett 1983), i.e., they

cannot be asymptotically stabilized by any continuous

state feedback even if they are controllable in the sense

of nonlinear controllability theory, such as local acces- . . i )
sibility. Considersymmetric affine systefadsiftless systems)

defined as
Among the subclasses of symmetric affine systems,

a lot of intensive works have been done for chained
form(Murray et al. 1994), power form(Pomet 1992),
or time-state control form(M.Sampeit al. 1995). , Where the state space R", the inputu :=
Though there exist wide variety of controllers pro- (uy,---,u,,)” belongs taR™. g;(x) : R® — R" are
posed for these forms, the clue for stabilization has smooth vector-fields defined &% . The control objec-
been essentially established. In fact, the controllability tive is to bring the state(¢) starting from an arbitrary
Lie algebra of chained forms and their equivalents initial statex(0) sufficiently close to the origif.

have particularly simple structure, so as to be gener-
ated by iteration of Lie brackets with a certain vector-
field, calledgenerator

2. PRELIMINARIES

2.1 Symmetric Affine Systems

z=g1(x)us + - + gm (@)U, z€R™ (1)

Let us define a distributioy spanned by the input
vector-fields

On the contrary, systems with two or more genera- G(w) :=span{g1(2), -+ ,gm(2)}, Tx €R".

tors have been hardly studied, and we have not find A vector fieldg is said to belond@j, namelyg € G, if
any winning trick yet. In this paper, we investigate g(x) € G(z) for all z € R™. In this mannerg is also

a switching and discontinuous state feedback control recognized as a set of (infinitely many) vector-fields.
algorithm for such multi-generator systems. The key From now on, we assume th@is always nonsingular,
concept of the proposed algorithm is simple enough, in or dim G = m for simplicity.



2.2 Controllability and Generator qg =u

G;j =4 — il

For a pair of vector-field¥, g : R™ — R"”, we define Y bin =0iu Yijn= Oiju; (6)
alLie bracketof f andg as Gijk = Dij(k—1)Ui Vije =Vije—1)U;
ag af (k:277/’1”) (622,,8”)
[fi9] =5 = 579 ) R :
oz Ox where i, j are integers taken from,--- ,m which
The set of all smooth vector-field§> (R") @ R" satisfy ¢ > j. For each pair of sucli, j, integers

forms aLie algebrawith Lie bracketing as its prod-  "ii»sij = 0 are defined to specify the dimension of
uct operation. lteration of Lie bracketing is simply @ %-coordinates.
denoted as The control inputs are. € R™. g € R™ is a special
j j—1 0o . part of state variables, which is just a direct integration
adyg:=[f,ad; " gl, adfg:=g (3) of u. We call it thebase coordinatesThe space) :=

for any integerj > 0. R™ which containgy is called thebase space
Consider the smallest Lie sub-algebawhich in-  0i; is a state variable corresponding to a pair of two
cludesg, i.e., a distribution satisfying the following ~control inputsu; andu;. All 6;;'s are combined to a
closure condition vectord € R, wherew := (7).

G2G, "f.geG=|fg€q. @ Qs (k=2 r;)togetherwithy, g;, 6;; can be

considered a set of state variables of a “chained form”.
We callG thecontrollability Lie algebraof the system  Let us denote
1. It is well known that a symmetric affine system (1) . T
is controllableif and only if dimG = n (Murray et iy = (@i D)
al. 1994), where the system is said to be controllable and combine all the vectoigp,;|i,j = 1,--- ,m,i >
if there exists a finite control sequencg), ¢ € [0, T j} into a single vectow. 1) is also defined in the same
which connects any pair of initial staig and desired  manner. We cal, ¢, v thefiber coordinatesand the
state in finite time. state sub-space which they belong to

Needless to say, controllability is the most essential G = RY x HRW % HRsu
requirement in treating symmetric affine systems; it
is vain to try to achieve the control objective if the
system isnot controllable. Thus we naturally assume
thatdim G = n, and we should pay attention kmw

i>7 i>7
is called fiber space Finally, combine all the state
variables into the state vector

the basis ofj is structured z:=(q%, 07, ¢")T e R".
Now it is time to introduce a notion ajeneratoras Not that the dimension of the total system is
follows. For a certain input index € {1,--- ,m}, let
; : m
us consider a set of Lie brackets of the form n=m-+ (2) + Z ri + Z Sij-
adl;ng j:]-v"'am (]#a)a kioala"'a = =
®)

namely, each element can be written as an iterative Lie 3 2 Controllability structure

bracket byg,. We call these Lie bracketsy*series”,

and . is called ageneratorof these brackets. Note | et ys take a look into the structure of controllability
that the range of starts from, thusg, - - - , g, them- | je algebra of the system (6). Preceding the analysis,
selves (i.e., Lie bracket of order zero) are also countedsyppose that eq. (6) is expressed as a vector-field

amonga-series. Ifallthe bases ofj are generated by  expression (1). Then the bases of the involutive closure
ga then the system is said to haveiagle generator. G can be collected as follows:

Similarly, if they can be generated lgy, andggs, then
the system is said to hat&o generatorsand so on.
g1, ,9m : mvectors
l9i,9;] (i>j) : wvectors
adgi¥g; (i>j,k=2,---,ri;) + Y _ri;vectors
3. SYMMETRIC AFFINE SYSTEMS WITH i>g

MULTI-GENERATOR
ULTI-G ORS adgitgi (i > j,0=2,-- 1) : Zs” vectors
3.1 System model i

The controllability conditiondlim G = n is thus satis-
In the rest of this paper, we consider the following fied. Moreover, we can see that the system (6)7has
class of symmetric affine systems: generators, i.eqgi, - , ¢m-



3.3 Subclasses

Uy U
'
The system model (6) contains most of well-known °

subclasses of symmetric affine systems, such as chain- o

ed systems, first-order systems, and second-order sys- e N\ )
tems (]ysi(‘ll(‘,.\ q-z—bi‘(‘l es
Example 1 (Chained systems). ! v

v

Chained systems(with single chain) can be expressed
by eq. (6) if we setn = 2 ands;; = 0. There is no
1p-variables in this case. Sineg; = 0, each basis of

g is 1-series, i.e.g; is the only generator. Note that Fig. 1. An image of integrator chains fot = 2

eitherg; or ¢, can be a generatorif; = 0 (so-called

Brockett integrator). 4. CONTROL ALGORITHM

Example 2 (First-order systems).

First-order systems(Murragt al. 1994) can be ex-  |n this section, we present a switching control algo-
pressed by eq. (6) ifwe sef; = 0andsi; = 0.There  rithm for multi-generator systems as the main result
are nog andy-variables in this case. The controllabil-  of this paper. Due to the lack of space, we restrict us
ity Lie algebrag can be spanned by, -+, g, and  to the two-input(n = 2) case which is defined in the

B e‘i

Lie brackets of order 1. Example 3.
For this class of systems, the authors have achievedyoreover, we assume that the control methoddios
a switched-feedback control algorithm(lwataetial. 2,n = 3 system (Brockett integrator,

2002) based on time-state control form. The main idea (Brockett 1983)) has been a|ready app“ed preceding
in that paper is to focus on a generator among basethe main control:

coordinates by turns.

Example 3 (2-input systems). Step O.

A class of systems obtained by letting = 2 in Execute any valid control method proposed for
eq.(6) plays an important role in this paper. To avoid | the Brockett integrator, in order to makg 6
notational complexity, we omit the subscrigtfrom converge to the origin. In the rest of the paper, we
the notation of variables, singe = (3) = 1. assume thag(0) = 6(0) = 0 as initial condition.

For this two-input system (7), we propose a two-fold

o
1 . control algorithm : the first step focuses gn as a
0 =qau; — qrus
: : generator, the second step focusegniT he two steps
¢1 = 9u1 wl = 9U2 . . . ..
Yo o @) will be iterated until all the state converge sufficiently
$2 =11 Y2 =t1up close to the origin.

o . Step 1
¢r = ¢r—1ul 1/15 = 1[)3_11142

Focus on a generatay; in order to perform
feedback stabilization fay, 8, ¢. — The rest part

Dimension of the system Is 1) is not fed back and its behavior follows a zero

dynamics.
m
m=me <2> + ; rig + ; siy =2t l4rts. Consider a subsystem of (7) corresponding 6, ¢
q =u

The simplest case occurs wher= s = 1 andn = 5. 0 = qgout — qrus
Such systems can be found in dextrous manipulation b1 = Ouy (®)
problem(ball-and-plate problem)(Samgeeial. 1999), bi = Gi_1u1, (i=3,--,7)
offset-hitch trailer problem(Vendittedét al. 1998) and
snake-like mobile robot(Ishikawa 2001). For this subsystem, we apply the following coordinate

S . . transformation
Let us see an intuitive interpretation of controllabil-
ity structure of this class of systems(Fig.1). At first,
control inputsuy,us are integrated to yield, gs. E1=q1, & =q
Then the motions of;, ¢ are coupled to affect’s 1
displacement; it is roughly proportional to curvature &= 5(9 +aq1a2)
of the trajectory ony; — ¢o. Afterwards, motions of R 4
1, ¢ - -+ are produced by an integrator chain starting Civs=—— Z(i — 7+ g dij
from 6 alonguy, while ¢, - - - are also affected by a (i +2)! §=0

similar integrator chain alongs,. (i=1,---,7),



(wheregg = 0, ¢_1 = q2), yielding the 2-input/ +
3)-state chained form:

Er=u1, & =up ()]

57;:51‘71’1141, (1237771—’_3)

Once the subsystem is expressed in this form, one
can apply any existing control method proposed for
chained form systems. In this paper, we mix up the
following two approaches in order to simplify the error
analysis in the next section.

[Step 1-a]

This sub-step is based diime-state control form
method proposed by (M.Sampeéet al. 1995), to
achieve mild divergence of the neglected values.

Suppose a positive scaler > 0 and letu; := ¢y, then
we havef; = ¢; and

=+ (10)

U2
Ir—i—l

Ery3=C1&rta (11)

wherez := (&, -+ ,&.12)7, thus the dynamics &

is written as a controllable linear system. Then apply
a linear state feedback, = F,= to asymptotically
stabilize (10).

Note that¢,, 5 is not fed back, thus subsdi|=
0,&r43 const} becomes equilibria. A proper
switching condition to move to Step 1-b will be pre-
sented in the next subsection(15).

[Step 1-b]

This sub-step is based on Astolfi’s discontinuous feed-
back controller(Astolfi 1996) to achieve rapid con-
vergence. Suppose a negative scalgr< 0 and let

uy := —A& . Then perform the following coordinate
transformation
=&
&i

Ci: '5T+37

yor

(i—2)1 el

which is discontinuous whefy = 0. Then

Go= MG (12)
00 0 0 1
1-1 0 0 0
Z=x|%2 2 0 |zi| |
0

00 (r+3)—(r+3)
Z:= (o - )T

thus the behavior oZ is written as a controllable
linear dynamics. Then apply a linear state feedback

) <7‘+3

?

uy = FyZ which asymptotically stabilizes (10). If
|¢1], |1 Z]| get sufficiently close to O, then it is allowed
to proceed to the Step 2.

Step 2

Focus on a generatay, in order to perform
feedback control fog, 8, 1. — The rest partp
is not fed back and its behavior follows a ze
dynamics.

o

This step is virtually same as the Stepl except that
some of the variables are swapped. Applying the fol-
lowing coordinate transformation

S1=q2, S=q
1
§3 = 5(—9 + q1G2)
1 1+1 )
Sivs = ) Z(i —J+ D) g i
" §=0
(i=1,---,s),
(wherevy = 0,v%_1 = q1), we have a two-input

(s + 3)-state chained form system as in eq.(9). The
procedure after this is as quite same as in Stepl-a and
Step 1-b.

[ ]
Termination

Repeat Step 1 and Step 2 untit|| gets sufficiently

small. °

4.1 Error convergence analysis of, ¢

In the previous subsection, we gave up controlling

in Step 1 andp in Step 2, so the behavior of these
“neglected states” follow a zero dynamics. Since the
zero dynamics are of higher-order, they are generally
slow compared to thmain(linear) dynamics, and will
never diverge as the main dynamics converges.

Now let us analyze whether the neglected states decays
or not, when the Steps 1 and 2 are repeated recipro-
cally.

To begin with, we investigate the amount of terminal
error of ¢ in Step 1-b under the discontinuous con-
troller. For notational simplicity, we suppose that the
initial time of Step 1-b ig = 0 and the initial values
are¢;(0), Z(0).

[Stepl-b]

Under the linear state feedback = F, 7, the closed
loop system of (10) takes the form of

7 =AZ, (13)

whereA,, is the designed asymptotically stable matrix.
According to the coordinate transformation (9), we
have

0 =28 — &6 = (20— () = CZ



whereC = [-1, 2, 0,---, 0]. Using this relation,
the behavior ot in Step 1-b is

t
lﬂl(t):/o (9U2d7’
t

/ eM7¢1(0) - CeMT Z(0) - Fre™ Z(0)dr.
0

Assumed, is a simple matrix for simplicity, so that it
can be diagonalized using a nonsingular maktias

P71A,P = A :=diag )\, -, A\ryo2).
Now let (a;;) denote a matrix whosg, j)-element is
a;;, and define?” C* F, P =: (d;;). Then we have an
explicit expression of the neglected error response
D1 (t) = C1(0)Z(0)" E(t) Z(0)

where

B(6) = (P (

dij{ePot At — 1}> P
Ao+ A+ A
(14)

Obviously, E(t) converges to a constant value

T EIA
Ao+ A+ A
ast — oo. The rest ofiy’s elementa)s(t), - - -, ¥s(t)

can be computed via straightforward integration fol-
lowing the same manner. °

lim E(t) = (P~ 1T

t—o0

According to the formula above, terminal erroroft

the end of Step 1 is determined by BY0) and(; (0) at

the initial time of Step 1-b. Thus, in the preceding Step
1-a, we can know an answer for question “how much
error ofy would be left if the step is changed to Step
1-b at this momer®”. This leads us to the following
switching criterion.

[Stepl-a]

At the beginning of Step 1-a, suppose that 0,0 =
0,7 = 0 is satisfied. Letp, denote the initial error
of ¢. Under the controli; = ¢y, us = F,E designed
for Step 1-a¢£; increases monotonically andZ (¢)||

will converge to a certain (small) constant. Thus the

expected terminal error (in the succeeding Step 1-b) Fj

of ¥, say |9, (£)

constant.

, will also converge to a certain

Then switch to the step 1-b if whelfwy(£)|| gets
sufficiently small, e.g., if

[Yae (O < Ellgoll (15)
is satisfied for some constahi £ < 1. °

Similarly, we can think of the following switching
condition for Step 2-a.

[Step2-a]

At the beginning of Step 1-a, suppose that 0,0 =
0,¢ = 0 is satisfied. Letp, denote the initial error
of 1. Expected terminal error @b (in the succeeding

Step 2-b), say ¢, (£)||, will also converge to a certain
constant.

Then switch to the step 2-b whdlip . (£)|| gets suffi-
ciently small, e.qg., if

[0 (O < K90l (16)
is satisfied for some constahk £ < 1. °

This error propagation mechanism is illustrated in
Fig.2. Step 1 receives an initial errgr, and lefts a
terminal errory to Step 2, and Step 2 receives an
initial error 2, and lefts a terminal errap_ to Step

1. In order to decrease the error in this propagation
loop, k must be less than 1.

\ \ \
L Step 1 .

1-a 1-b
q1 A

_ %0

Fig. 2. Error propagation mechanism

5. SIMULATION

Let us see efficiency of the proposed control algorithm
by performing a numerical simulation. The target sys-
tem is 7-dimensional systems obtained by setting
2,r=s=2in (7).

g =u
0 = q2u1 — q1uU2
7. / .
%7 = 0 1= (17)
P2 = Pruq o =1Prun

The initial state isz(0) = (0,0,0,1,—1,1,—1)7.
F,, F, are determined via LQ optimal regulator de-
sign, andk = 0.1.

g.4 shows time response of the state variables and
Fig.3 illustrates the trajectory of base variablegpn
g2 plane.

At first, ¢; plays a role of generator in Step 1, ants
error is left at the end of the step. Then the generator is
switched tags in Step 2, andb’s error is left at the end

of the step, which is less than the previous terminal
error of ¢ timesk. The algorithm is terminated after
performing Step 1 and Step 2 once again.

6. CONCLUSION

In this paper, we proposed a switching state feed-
back control algorithm for a class of symmetric affine



Fig. 3. ong;-g2 plane

systems with multi-generators. In the proposed algo-
rithm, each generator is chosen in sequence and corre-
sponding sub-controllers are applied, where each sub-

controller design is based on existing Astolfi's and

Sampei’s design method proposed for chained sys-
tems. The error propagation mechanism due to the

repetition of generator switching was also analyzed.
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