Copyright © 2002 IFAC

15th Triennial World Congress, Barcelona, Spain

STOCHASTIC POWER CONTROL FOR WIRELESS
SYSTEMS: CENTRALIZED DYNAMIC SOLUTIONS AND
ASPECTS OF DECENTRALIZED CONTROL !

Minyi Huang *, Peter E. Caine$ and Roland P. Malhaméf

*Department of Electrical & Computer Engineering, McGill
University, Montreal, Canada, H3A 2A7.

tDepartment of Electrical & Computer Engineerirfgcole

Polytechnique de Moniial, Montreal, Canada, H3C 3A7.

Abstract: This paper considers power control for log-normal fading channels. A rate based
power set point control model and associated performance measures are introduced. The
value function of the stochastic optimal control is a viscosity solution to the associated HIB
equation and is approximated by smooth functions. Finally, by introducing multi-objective
indices, we give a game theoretic formulation to the dynamic power optimization problem.
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1. INTRODUCTION phone batteries. Conversely, low levels of signalling
will result in inadequate QoS. In fact, tight power

Power control in cellular telephone systems is an im- control is indirectly related to the ability of the CDMA
portant design task for the minimization of energy base station to accommodate as many users as possible
requirements at the user level and in order to insure awhile maintaining a required QoS.
constant or adaptable Quality of Service (QoS) in the
face of cellular telephone mobility and fading chan-
nels. This is particularly crucial in CDMA (code divi-

Extensive research has been done on power control
for static models which largely ignore the dynamics of
sion multiple access) systems where individual usersChannel fading as well as mobility, see (Viterbi A.M.
are identified not by a particular frequency carrier @nd Viterbi A.J., 1993; Sun and Wong, 1999, 2000;
and a particular frequency content, but by a wideband nd references therein). In this paper, the modelling
signal associated with a given pseudo-random number@Nd @nalysis of power control strategies employs wire-
code. In such a context, the received signal of a given!€SS models which are time-varying and subject to
user at the base station views all other user signals, ad2ding. Specifically, we consider log-normal fading
well as other cell signals arriving at the base station, channels. Motivation and background information on
as interference or noise, because they both degrade thROWer control for log-normal fading channels can be
decoding process of identifying and extracting a given found in (Huang et al., 2001Db).

user’s signal. Thus, it becomes crucial that individual The paper is Organized as follows: in Section 2 we
mobiles emit power at a level which will insure ad- propose the optimal control formulation of the CDMA
equate signal to noise ratio at the base station. Morepower adjustment where the performance function is
specifically, excess levels of signalling from a given intended to reflect power minimization objectives un-
mobile will act as interference on other mobile signals der signal to noise ratio constraints. In Section 3, we
and contribute to an accelerated depletion of cellular ana|yze the Singu|ar HJB equation associated to this
stochastic control problem and suboptimal approxi-
1 Work supported by NCE-MITACS Program 1999-2002 and Mation of the value function, and Section 4 contains
NSERC Grants 1329-00, 1361-00.




numericalsolutions of the suboptimalcontrol. Sec-
tion 5 gives a game theoretic formulation for dy-
namic power optimizationand introducesthe notion
of Paretooptimality underdecentralizednformation.

2. AN OPTIMAL CONTROL FORMULATION
2.1 TheChannelModel

Let z;(t),1 < i < n, denotethe attenuation(ex-

pressedin dBs and scaledto the naturallogarithm
basis)at the instant¢ of the power of the i-th mobile
of anetwork andlet o;(t) = e*®) denotethe corre-
spondingpower loss.Basedon thework of Charalam-
bous and Menemenlis(1999), we model the power

attenuatiordynamicsby

dx; = —ai(mi + bz)dt +oidw;, 1 <i<n, (2.1)

wheren denotesthe numberof mobiles, {w;,1 <
i < n} aren independenstandardiienerprocesses,
andtheinitial statesz;(0), 1 < ¢ < n aremutually
independentGaussianrandom variableswhich are
also independentf the Wiener processesin (2.1)
a;, by, 05 > 0,1 <4 < n. Thefirst termin (2.1)
impliesalong-termadjustmenbf z; towardsthelong-
termmean—b;, anda; is the speedf the adjustment.
Correspondinglythe i-th power loss «; hasa long-
termadjustmentowardsits long-termmeanwhichis
the averagelarge-scalepath loss (Charalambousind
Menemenlis]1999).

2.2 RateBasedPower Contol

Currently the power control algorithmsemployedin
the mobile telephonedomainusegradienttype algo-
rithmswith boundedstepsize.Thisis motivatedby the
factthatcautiousalgorithmsaresoughtwhich behae
adaptvely in acommunicationgrnvironmentin which
the actualposition of the mobile andits correspond-
ing channelpropertiesare unknovn andvarying. We
modeltheadaptve step-wiseadjustment®f the (sent)
power p; of thei-th mobile by the so-calledrate ad-
justmentmodel(Huangetal.,2001a,b)

dpl = uidt; |uz| S Uimazs 1 S i S n, (22)

wheretheboundednputu; controlsthe sizeof incre-
ment dp;. Without loss of generality w;,,,,, Will be
setequalto one.The adaptve natureof practicalrate
adjustmentontrollawsis replacechereby anoptimal
controlcalculatiorbasednfull knowledgeof channel
parameters;, b;, ando;, 1 < i < n. In theintended
practicalimplementatiorof our solutiontheseparam-
eterswould bereplacedy on-line estimatesWrite

T = [m17"' ,wn]‘r7
b= [pla"' 7pn]T7

a = [ala"' 7an]T7
u=[ug, - ,uy]".

2.3 Performancd~unction

Let n > 0 be the constantsystemthermal noise
intensity which is assumedo be the samefor all n
mobile users.Then,in termsof the power levelsp; >
0, andthe channelpower attenuationsy;, 1 < i < n,
the so-calledsignal-to-interferenceatio (SIR) for the
i-th mobileis givenby

Q;iPq
D 0ypi 0
A standardcommunicationgquality of servicecon-
straintis to requirethat

T; = 1<i<n. (2.3)

wherew;, 1 < ¢ < n, is aprescribedsetof individual
signalto noiseratios.We notethattheconstraint$2.4)
areequvalentto

Q;iPi .
li==a————— >, 1<i<n, (2.5)
i ypi '

2 1- > 0. Further from (2.5)we see

wherey; = e

n
0< D pi <1, (2.6)
=1

holdsif we require(2.4)to be solvable.

A straightforvard way to formulate the optimiza-
tion problem would be to seek control functions
which yield the minimizationof the integratedpower
fOT >, pi(t)dt subjectto the constraintg2.5)-(2.6)
ateachinstantt, 0 <¢ < T.

Considerthe pointwise minimization of the summed
power Y7, p; under(2.5)-(2.6)andp; > 0,1 <
1 < n. Settingn inequalitiesin (2.5) asequalitiesand
taking into accountconstraint(2.6), we geta positive
vectorp® = (p,--- ,p%) givenby

7 P 1/ —

(- )’

It turnsoutthatp® is the uniquepositive vectormini-
mizing )", p; underconstraint§2.5)-(2.6).In other
words, the solution to minimizing -7 | p;, p; >
0,subjectto (2.5),(2.6)is the uniquesolutionto

a;ip;
27:1 a;p; +1
Henceit is well motivatedto replacethe above point-
wise constraineddeterministicoptimizationproblem

with thefollowing unconstrainedeterministigenalty
functionoptimizationproblem

1<i<n. (2.7)

miny “[aipi — (D ayp +MPP+AY_pi, (2.9)
i=1 j=1 i=1

whereX > 0. However, becausehe power vectoris

a part of the stochasticchannel-pwer systemstate

with dynamicg2.1),(2.2),it isimpossibleto instanta-

neouslyminimize (2.9) via u(t) atall timest. Hence,



overtheinterval [0, T'], we employ thefollowing aver-
agedintegratedossfunction:

T n n n
E/ O laipi — (D cjpi + )P + 2D piddt
0 =1 j=1 i=1
(2.10)
subjectto (2.1)and(2.2),whereX > 0.

3. ANALYSISOF THE OPTIMAL CONTROL
AND APPROXIMATION OF THE VALUE
FUNCTION

We will analyzethe optimalcontrol problemin terms
of the statevariable(z, p); this facilitatesthe defini-
tion of the valuefunctionv sincez; is definedin R,
while a; is only definedin R*, 1 < i < n. Further
define

—ay(z1 + b1) op--- 0
flz) = : , H=1 1t ],
an(Tn + bp) 0 --- op

(1), o= (1) e= (7).

We write (2.1),(2.2)in thevectorform

dz =9¢dt+Gdw, 0<t<T, (3.1)

wherew is ann x 1 standardWiener processleter
minedby (2.1). We will denotethe statevariableby
(z,p) or z, orin amixedform. We write theintegrand
in (2.10)in termsof (z, p) as

n

=Y le"pi— (Y e"p; + )P

i=1 j=1

L(2) +A> i,
=1
where A\ > 0. The admissiblecontrol setis U/ =
{u(:) | uisadaptedo o(zs,ps,s < t), andu(t) €
U £ [-1,1]",Y0 < ¢t < T}. We assumep hasa
deterministicinitial valueat s = 0; then obviously
o(zs,p5,8 < t) = o(xg,ws,s < t). The cost
associatedavith (3.1) andacontrolu is specifiedto be

T
J(s,a:,p,u) = E[fs L(ﬂir;pr)dﬂﬂfs = T,ps = p]’
wheres is theinitial time; furtherwe setv(s, z,p) =
infy ey J (s, x,p,u), andsimply write J(0, z, p, u) as
J(z,p,u).

Theoem3.1. (Huang et al., 2001b) There exists a
uniqueoptimalcontrolu € U suchthatJ(zg, po, u) =
inf e J (2o, po, u), for ary (xg, po), anduniqueness
holds in the sense:if thereis u € U such that
J(zo,po,u) = J(xo0,po,u)thenPo(us # us) > 0
only onasetof timess € [0, T] of measuré®, where
Q is thesamplespace. |

Definition3.2. (Yong and Zhou, 1999) A function
o(t,z) € C([0,T] x R™) is calleda viscosity sub-
solution to the HIB equation

O™v 8%v
vy w2 ean -1

z € RZ“, (3.2)
if o |;=7< h, andfor ary ¢(t,z) € C2([0,T] x

R?"), wheneer 7 — ¢ takes a local maximum at
(t,z) €[0,T) x R2n we have

_o%
8 9 (

v
0= 5 + sup{—

v |t=T= h;

¢

5667 - L <,

(3.3)

at(t,z). v € C([0,T] x R™) is called a viscosity
supersolutionto equation(3.2) if T |;=r> h, andin
(3.3) we have an oppositeinequality at (¢, z), when-
evert — ¢ takesalocal minimumat (¢, z) € [0,T") x
R?", 7 is called a viscosity solution if it is both a
viscositysubsolutioranda viscositysupersolution O

We introduce the function class G such that each
v(t,z,p) € G satisfies:a)v € C([0,T] x R*")
and, b) thereexist C,k1,ka > 0 suchthat [v| <
C{1+ X0, % + T (2] + [pil =)}, where
theconstant<, k; , k2 dependoneachw.

Theoem3.3. (Huanget al., 2001b) The value func-
tion v is aviscositysolutionto the equation

v o™ v, .
O=-%+ igp{_é‘—zw} -5 (WGG ) —
v(T,z,p) =0 (3.4)

Moreover, thereexists only one viscosity solutionto
(3.4)in theclassg. |

We modify (3.4) by adding a perturbingterm and
formally carryingoutthe minimizationto get

n
= + I e
Ut Uz zzzz 2 € vmm
=1

- Zv;iaz’(-ri +bi) — Z vp, | + L(z, p),
i=1 =1

wherewe usev* to indicatethedependencene > 0.
Wewill seekaclassicakolutionv® in theclassF such
thatary v € F satisfiesa)v € C12((0,T) x R*™) N
C([0,T] x R?") and,b) |[v| < C(1 + |p|** + e*2/2]),
whereC, k1, k2 > 0 dependbnwv, andv(T, z, p) = 0.

(3.5)

Theoem3.4. (Huang et al., 2001b) The equation
(3.5) hasa uniquesolutionv¢ in F for e > 0, and
for0 < e < 1, B C R?" compactp® — v uniformly
on[0,T] x B, ase — 0, wherew is thevaluefunction
of (3.1). O

4. NUMERICAL IMPLEMENTATION OF THE
SUBOPTIMAL CONTROL LAW

We consideitwo mobileswith i.i.d. channeldynamics
dr; = —a(z; + b)dt + odw;, i=1,2,0<t<1.



Theperformancdunctionis £ fol L(=x¢, p)dt with

L =1[e"tp; —0.4(e"p; + €e™2py + 0.25)]2

+[e*p2 — 0.4(e%'p1 + €*>pa + 0.25)]* + A(p1 + p2).

Theapproximatiorequation(3.5) takestheform:

(Upwl + UP2P2)
a(-'132 + b)”m - |Up1| - |Upz| +L,

1 1
0=v + 50'2(1);“;“ + Uzzzz) + 552
—a(z1 + b)vg, —
o(1,2,p) = 0.

The above equationis solved by a differencescheme
(Ames,1992)in aboundedegion

S = {(t,m,p),O S t S 13_4 S Z; S 3a|pi| S 3}

An additionalboundaryconditionis addedsuchthat
vlz = 0, whered = 8S\{(t,z,p),t = 0}. Take step
sizesdt,h > 0, anddenotez = (z1,22,p1,p02)",

e; = (0,---,1,---,0)" wherel is thei-th element
in therow. We usethescheme

t[ v(t + dt, 2) —v(t, 2)]

[ (t,z + e1h) + v(t,z — e1h) — 20(t, 2)]

z[v(t, 2 + e2h) + v(t, 2 — eah) — 2v(t, 2)]

+2,52 [v(t,z + esh) + v(t, z — esh) — 2v(t, 2)]

+2?2 [v(t,z + esh) + v(t,z — esh) — 20(t, 2)]
w1+b)[ (t 2z + elh - U(t Z)]l{a(w1+b)<0}

=4 2) — u(t, 2 exh)]Lia(er 501

SO 2 4 eoh) = ot )L acen <o)
=240 (4 2) — u(t, 2 - eah)]Lia(ersy0)

+3+ [ (t,z + esh) —v(t,z — egh)]

—I—;‘—fl[v(t, z + egh) —v(t,z — eqh)] + L(z2),

uy = —sgru(t, z + esh) — v(t, z — esh)],

uz = —sgru(t, z + esh) — v(t, z — e4h)].

v
v
v
(Y
)

The solution to the differenceequationcan be ob-
tainedby aniterative procedureThe corvergenceto
the exact solution of the iteration can be proved by
the methodin (Kushnerand Kleinman, 1968). We
takea = 4, b = 03, 02 = 0.09, € = 0.15,
6t = h = 0.1. Casel: A = 0.01; Case2: A = 0.001.
Thevaluefunctionis furtherinterpolatedo geta step
sizeof 0.05.The controlis determinedby the descent
direction of the value function. In the figures,qs, ¢-
are the pointwise ideal powers obtainedfrom (2.8).
Figures2-3, Figures4-5 shav the resultsfor Cases
1, 2, respectiely. Figure 6 shavs the value function
surface. When at the initial time one mobile hasa
high power andthe otherhasalow power, we seethat
aninterestingequalizatiorphenomenotakesplaceas
shavnin Figure4. At thebeginningthecontrollerwill
first make the mobile with a high power reducepower
andthe otheroneincreasepower, and after a certain
periodbothmobileswill increasgowertogetherThis
happensbecausevhen the power differenceof two
mobilesis big, more penaltyis causedn the perfor
mancefunction.
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5. DECENTRALIZATION AND A GAME
THEORETICAPPROACH

Essentially in the stochasticoptimal control frame-
work, the performancein termsof the SIR level and
power consumption)f eachmobileis influencedin-
directly by its control, sincethe control actionsof the
mobilesarecoordinatedy acentralizectostfunction.
Thus, to increaseflexibility of individual mobilesto
adjust their own performanceijt is quite naturalto
introduceindividual costsfor eachmobile, and this
potentially helps develop decentralizecbptimization
for networks.

Now we introduce the multi-objective optimization
approachfor the power control problemand give a
gametheoreticformulation. The readeris referredto
(Orda and Shimkin, 2000; Yaicheet al., 2000; Sun
and Wong, 2000) for gametheoreticapproachego
rate, power control, and network service allocation
for static models.In practical systemsi,it is impor-
tant to implementcontrol stratgy in a decentralized
manneri.e., eachmobile useradjustsits power based
onits local informationconcerninghe network. This
cansignificantlyreduceinformationexchangeefforts
amongusersandbasestationsandthusreducesystem
running costs.And basedon theseaspectsjt makes
sensedo placeemphasi®ndecentralizedjames.

Herewe alsocall acontrolasapolicy or strateyy. The
controlis takenfrom anadmissiblecontrolseti/ to be
definedappropriatelyWrite

li(2) = li(z,p) = [e"pi — (D> _ €% p; +m)]* + Api,

Jj=1
andfor useri, we defineits objectve functionas

T
Ji(z,p,u) = | / li@e, p)dilzo = (z,p)]. (5.1)

Each user choosesits control to minimize its cost
index. Sometimewe omit (z,p) in J; whenthereis
no ambiguity For illustrating a decentralizechower
adjustmentstratgy, as an example, we define the
decentralizeédmissiblecontrol setas

Ugee = {u = (u;)?4|u; € [-1,1] andis adaptedo
A .
o(zi(s),pi(s),ri(s) = 32 €%p; +m, s <t)}.

We write thei-th componenbdf Uy, by Ui, .. Herer;

denoteshe total interferenceto useri causedoy all

the otherusersandthe systemthermalnoise.Soeach
userutilizesits own power andattenuatiorhistory as
well asthe interferenceit recevesto determineits
power adjustmentThis givesa decentralizedontrol
stratgy. It is of interestto determineeachmobile
users power by consideringotherinformation struc-
ture which is locally accessibleand can efficiently
reflectnetwork information.In a practicalsystem bit
errorrate(BER) couldbeusefullocal information.

Definition5.1. A controla € U is a Nash equilib-
rium, if for eachi andary u; € U?, we have

Ji(Ui,u;) < Ji(us, U_;)

wherel{ is acertainadmissiblecontrolset(centralized
or decentralized)(/¢ is thei-th componenbf I/, and
u_; denoteshe remainderof % generatedy taking
outthed-th component. |

Definition5.2. & € U is saidto be Pareto optimal if
thereexistsnow € U suchthat J;(w) < J;(u) for all
1 with atleastonestrictinequality O

Definition5.3. u € Uy, is called a decentralized
information Pareto optimal (DIPO) control with
respectto J, for a certainset of costindicesJ =
(Ji,---,Jn) : w = R, if u is Paretooptimal with
respecto ;... The associateaptimal costvectoris
calleda DIPO solution. |

The following gives a simple relation betweenthe

optimal controlundercentralizeccostandcentralized
information,andthe Paretooptimal strateyy with re-

specto individual costsfor eachagentandcentralized
information. The additive form of the centralizedcost
functionimmediatelyyieldsthe following result.

Proposition5.4. Supposeu is the optimal control in
Theorem3.1 underthe cost(2.10)andthe admissible
control seti/ definedin Section3. Thenu alsogives
a Paretooptimal stratgyy for the multi-objective cost
indicesgivenby (5.1)fori = 1,--- ,n, with U/ given
in Section3. |

Now we usethefollowing exampleto furtherillustrate
theabove notions.To reducecomputationatomplex-
ity, the exampleis extremelysimple.

Example:Supposeave have two playerswith dynam-
ics andcostindicesgivenby:

dx = ydt + urdt + dw,
dy = xdt + uadt + dw,,

1 T
J1 = lim sup ET/ (aa® + u?)dt,
T— o0 0 2
| Ve (5:2)
Jo = limsup E— (ay® + u3)dt,
T— o0 T 0
wherew; , we aretwo mutuallyindependenstandard
Wienerprocessesy > 0, andthe controlis restricted
to belinear time invariantfeedbacku; = iz, uy =
I,y usingonly local measurement@.e., decentralized

information). O

Proposition5.5. The associatedcosts J;,i = 1,2
in (5.2) are finite if and only if (I;,l2) € L =
{(ll,lQ) Wi, > 1, I; < 0,i = 1,2}. For
(I1,1s) € L, the associatectostsare givenby J; =
atl 1y Jo =

a+l§ 11 7
2 Toihe 5> 1o+ Furthermorel; =

Iy = —+/2 + a givesthe unique Nashequilibrium,

andl; = I3 = —\/B+a+ /B a2 +4al/2 2




¢* givesa Paretooptimal control. In otherwords,the
feedbackcontrolu, = Iz, uy = I3y is DIPO.

Proof. In fact, for ary feedbackgain pair (I1,12), to
malke the associatedostsJ;(l1,12), i = 1,2, finite,
hol ) to bestrictly stable,
11

whichis equivalentto (I;,15) € L. In orderto obtain
Ji,solvingKA+ ATK + M = 0, whereM;; = a+
12, M5 = Moy = Moy = 0, we getapositive definite
symmetricsolution K, and

we needthematrix A = (

a+i? Iy
J1 21—l (5-3)
In the sameway, we obtain
o+ lg L
= . 5.4
J2 2 1—1il, (5-4)
By taking 57 = %2 = 0, we find a uniquesolu-

tion (I1,12) = (=v2+ a,—v/2 + a), andit canbe
shown that for any (ll,ZQ), (Zl,lz) S Z, Jl(ll,ZQ) >
J1(71,12), JQ(Z1,l2) > JQ(Zl,ZQ). FinaIIy, concern-
ing the pair (I},13), if thereis (lAl,lAg) such that
Ji(l,1) < Ji(l3,1%),5 = 1,2, then it follows
J(01,12) = Ji (I, 12) + Jo(la, 1) < J(1f,15). Onthe
otherhand,we canshaw thatJ(l;,[>) attainsits min-
imum at theinterior of L. By thefirst ordernecessary
conditionwe find the minimumis attainedata unique
point (c*, ¢*). Soit is impossibleto find (I;,5) € L
suchthatJ;(Iy,15) < Ji(I%,13),i = 1,2, with atleast
onestrictinequality O

We modify the admissiblecontrol set by restricting
the feedbackgain to be bounded,i.e., |l;| < B; >
2,4 = 1,2. Now in thedefinitionof J;, takea = 1 and
replaceu; by fu;, 8 > 0,7 = 1,2, in theintegrand.
B is interpretedas a pricing parameteifor the input
enegy; then under price 8 = i, (l1,l) =
(Bo, Bg) is aDIPO (Nash)equilibrium,where By =
min{B;,i = 1,2}. (See(SunandWong, 2000) on
reshapingequilibrium set by pricing). We note that
even if only [; variesand [, is fixed, the control
input procesd,y will be forcedto changesincethe
two componentsof the statevector are interacting.
We term the feedbackpair (I1z,l2y) as a (Nash)
equilibriumin ageneralizedense.

For this example finite horizoncostindiceswith time
varying linear feedbackcan also be consideredand
the existenceof DIPO equilibria can be analyzed.
But the computationshould be more complex. We
remarkthatit is an importantissueto determinean
appropriatedecentralizednformation and controller
structureto make efficient use of local information
for eachuserandmeanwhilekeepthe computatiornof
DIPO equilibriarelatively simple.

6. CONCLUSION

We have studiedrate-basedtochasticoptimal power
control for CDMA systemsand its suboptimalap-

proximation.By introducingindividual costsfor each
agent(mobile) to replacethe centralizedcostin the
stochasticoptimal control framework, we presenta
game theoretic formulation for the power control
problem.A comparisorbetweenthe two approaches
would be of interestandwill beinvestigatedn future
work.
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