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Abstract:
It is the intent of this paper to add to, and improve the existing design tools for nonlinear
output feedback systems. Considered here are systems, exhibiting parametric uncertainty,
and containing nonlinearities dependent on the output alone. A lower triangular state
transformation is utilised, equivalent to that obtained via the traditional and recursive
backstepping algorithm. Extra damping is introduced to counter the uncertainty and observer
error effects. The benefits of this approach lie in the significant reduction in total controller
dynamic order, as well as the simplicity and clarity provided by implementing backstepping
from a purely structural perspective.Copyright c

�
2002 IFAC
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1. INTRODUCTION

The introduction of backstepping, and subsequently,
adaptive backstepping, over a decade ago, provided a
great step forward, including the possibility of solving
many more control problems, particularly for nonlin-
ear systems satisfying a triangular structure condition
(Krstić et al., 1995).

Early adaptive state feedback results exhibited over-
parametrisation, a trend which was removed by the
introduction of tuning functions(see also (Krstićet
al., 1995)). For output feedback backstepping designs,
overparametrisation was also a characteristic early on
in (Marino and Tomei, 1993) and (Kanellakopoulos
et al., 1991). Not unlike state feedback designs, the
tuning functions method was also used for output
feedback systems in (Krstićet al., 1994), and (Krstić
and Kokotović, 1994), to remove the overparametrisa-
tion. Two approaches were developed which used the
tuning functions idea:K-Filters (Kreisselmeier, 1977),
andMT-Filters (Marino and Tomei, 1993).

Both methods introduced a series of filters, often in-
cluding large matrix filters, to observe and, in the case
of MT-Filters, transform the system. The more un-

known parameters that are present, the larger the size
of the matrix filter. The controller, in its entirety, can
therefore potentially be quite large in dynamic order.
Using K-Filters for example, the total dynamic order
of the filters alone (not including adaption and without
uncertainty on the input coefficients) can be minimally�
n � 1� �

q � 1� , wheren is the state dimension, andq
is the size of the uncertainty vector. For MT-Filters,
a similar order applies, however plus the order of a
separate observer.

In addition to the large dynamic order of the controller,
the methods tend to be quite complicated, particularly
when implemented by the traditional recursive back-
stepping approach.

The method presented here significantly reduces the
total dynamic order of the controller and simplifies
the design. In fact, the large matrix filters traditionally
used are not required in this design. The price paid
for such a design is a more conservative controller,
guaranteeing robust stability of the output and state.
Asymptotic stability of the state and output requires
the nonlinearities to vanish at the origin. The result
is presented for systems where parametric uncertainty
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exists in the nonlinearoutputfeedbacktermsonly. It
shouldbestatedthatsystemsconsideredin the litera-
turealsoallow lower relative degreesanduncertainty
in theinputcoefficients.Thesesystemsarenotconsid-
eredherefor simplicity andclarity, andalsobecause
existing techniques,suchasthosecontainedin (Krstić
et al., 1995),canbeappliedto extendthis methodso
asto handlethis classof systems.

Thedesignutilisesalowertriangularstatetransforma-
tion, equivalentto thatwhich would beobtainedvia a
recursivebacksteppingalgorithm.Thisaffordsamore
structuralapproach,andit is hoped,a clearersolution
to theproblem.

1.1 Notation

Some terminology listed below is introduced in
(Clementsand Jiang,1999) but is repeatedherefor
convenience.� A vector or matrix function f of x has lower

triangular dependencein x if the i-th component
or row is a functionof x1 �	�
�	�	� xi only. Then f is
saidto beLTd in x or f � LTd

�
x� .� A vector or matrix function f of x hasstrictly

lower triangular dependencein x if thei-th com-
ponentor row is a function of x1 �
�	�
��� xi 
 1 only.
Then f is saidto beSLTd in x or f � SLTd

�
x� .� With In an n-th order identity matrix, denotean

nth ordershift matrixNn � ℜnxn andinputmatrix
bn � ℜn as:

Nn � �
0 In 
 1

0 0 � � bn � �
0
1 � � (1)

Further, introducethefollowing definitions:

Definition1.1. For a matrix A � ℜnxm, definethema-
trix quantity�

A

�
p ����� n

∑
i � 1

m

∑
j � 1

�
ai j � 2 � p � (2)

Definition1.2. For a matrix A with rows aT
i ,

�
i �

1 �	�
�	�
� n� , and a positive integer p, define a positive
diagonalmatrix � p � A� to be� p � A� �����

���
a1

���
p

. ..

� �
an

���
p !#"$ � (3)

2. SYSTEMDESCRIPTION

Considertheclassof uncertainnonlinearsystemswith
thefollowing description:

ẋ � Nnx � φ
�
y�%� ΦT �

y� θ � bnu

y � cT
n x

(4)

wherex � ℜn is the state,unavailable for feedback,
u � y � ℜ arethe input andoutputrespectively, θ is an
unknown but constantparametervector, andφ andΦT

areknown vectorandmatrix functionsof the output
respectively. Assumethefollowing:

Assumption2.1. The matrix function ΦT �
y� satisfies

ΦT �
0� � ΦT

0 for someconstantmatrix ΦT
0 . Further,

with Φ̄
�
y� � Φ

�
y�&� Φ0, andfor continuous,smooth

functionsΨ̄
�
y� , andψ̄i , 1 ' i ' n,

�
Φ

�
y�(� Φ0

�
2 � �

Φ̄
�
y� �

2 ) y2Ψ̄
�
y�*

Φi
�
y�(� Φ0 + i * 2 � *

Φ̄i
�
y� * 2 ) y2ψ̄i

�
y� (5)

whereΦT
i

�
y� andΦT

0 + i arethe i-th rows of ΦT �
y� and

ΦT
0 respectively.

3. THE CONTROLLER DESIGN

As the state is unavailable, a state estimate,x̂, is
introduced,andobserverdynamicsgivenby

˙̂x � Nnx̂ � φ
�
y�%� k

�
y � ŷ�%� bnu

ŷ � cT
n x̂ � (6)

Thegaink is chosensuchthatA0 � Nn � kcT
n isastable

matrix.Using(6), thestateestimationerror x̃ � x � x̂,
hasthefollowing dynamics

˙̃x � A0x̃ � ΦT �
y� θ � (7)

That is, a stablefilter drivenby theunknown θ. Now,
introducea new statez, and auxiliary input v, via a
statetransformationandfull statefeedback

z � x̂ � NT
n f

�
x̂ � y� β̂ �%� cn

�
y � ŷ� (8)

v � u � bT
n f

�
x̂ � y� β̂ � (9)

where β̂ is an estimateof the unknown parameter
β � *

θ
* 2, and f is avectorfunctionto bedetermined.

It is assumedthat f � LTd
�
x̂� , howevernostructureis

assumedin y or β̂.

By denotingthe quantitiesFx
�
x̂ � y� β̂ � � ∇x̂ f

�
x̂ � y� β̂ � ,

Fy
�
x̂ � y� β̂ � � ∇y f

�
x̂ � y� β̂ � , andFβ

�
x̂ � y� β̂ � � ∇β̂ f

�
x̂ � y� β̂ � ,

and ignoring function dependencefor simplicity, the
z-dynamicsareobtainedby differentiating(8),

ż � ˙̂x � NT
n

�
Fx ˙̂x � Fyẏ � Fβ

˙̂β �%� cnc
T
n

˙̃x� Nnz � f �-,.�0/ cT
n ΦTθ �01 x̃ �32 ˙̂β

(10)

with v � 0, and where the terms , � / � 1 � 2 �
LTd

�
x̂� � SLTd

�
f � aredefinedas



, �
x̂ � y� β̂ � f � � NT

n Fx
�
Nnx̂ � φ � k

�
y � ŷ�
�� �

φ � k
�
y � ŷ�
�%� NT

n Fyc
T
n

�
Nnx̂ � φ �/ �

x̂ � y� β̂ � f � � NT
n Fy � cn1 �

x̂ � y� β̂ � f � � NT
n Fyc

T
n Nn � cncT

n A02 �
x̂ � y� β̂ � f � � NT

n Fβ

(11)

From (10), the z-dynamicsaredependenton the un-
knownsθ and x̃, andthe yet to bedeterminedupdate

law ˙̂β. A candidateLyapunov functionis introduced,

V
�
z� β̃ � x̃� � 1

2
zTz � 1

2
β̃2 � 1

2
x̃TPx̃ (12)

whereβ̃ � β � β̂ is the parameterestimateerror, and
P is a positive definite matrix which satisfiesPA0 �
AT

0 P '4� Q 5 0, for someQ.

Thederivativeof V is thengivenby

V̇
�
z� β̃ � x̃�6' zT 7 Nnz � f �8,.�9/ ΦT

1 θ�:1 x̃ �;2 ˙̂β <=� 1
2

x̃TQx̃ � x̃TPΦTθ
(13)

with ΦT
1

�
y� denotingthefirst row of ΦT �

y� . Theprod-
uct termswith respectto theunknown θ andx̃, canbe
appropriatelyboundedusingYoung’s inequality. For
positiveconstantsε andε0, thenwith somemanipula-
tion, wehave

zT / ΦT
1 θ � zT / θT Φ̄1 � zT / θTΦ0 + 1 � µ1' β

2

�
ε � ε0 � zT � 2 � />� z � n

2ε
zTcncT

n ψ̄1
�
y� z

zT 1 x̃ ' ε
2

zT � 2 � 1?� z � n
2ε

x̃T x̃

x̃TPΦT θ � n

∑
i � 1

n

∑
j � 1

x̃i pi jΦT
j θ' n

ε0
x̃T x̃ � µ2 � βε0

2
zTcncT

n ψ̃
�
y� P� z

(14)

with

ψ̃
�
y� P� � n

∑
i � 1

p̄iψ̄i
�
y�

p̄i � n

∑
j � 1

p2
i j � (15)

Here,µ1 � n
2ε0

*
Φ0 + 1 * 2 andµ2 � βε0

2

n

∑
i � 1

p̄i
*
Φ0 + j * 2 are

constants,pi j is the
�
i � j � -th elementof P, and we

haveusedy � z1 � zTcn. Also importantly, it is easily
confirmedthat � 2 � />� � � 2 � 1?�(� LTd

�
x̂� � SLTd

�
f � .

Now, returningto theLyapunov functionderivative,V̇
now satisfies

V̇
�
z� β̃ � x̃ �' zT

�
Nnz � f �8,@� 1

2
β̂ A �

ε � ε0 �B� 2 � /C�� ε0cncT
n ψ̃ D z � n

2ε
cncT

n ψ̄1z � ε
2

� 2 � 1E� z�F2 ˙̂β GH� β̃
�
˙̃β � 1

2
zT A �

ε � ε0 �I� 2 � />�� ε0cncT
n ψ̃ D z� � 1

2
A qm � 2n

ε0
� n

ε
D x̃T x̃

(16)

whereqm denotesthe smallesteigenvalueof Q. The
inequality (16) suggeststhe following parameterup-
datelaw

˙̂β � 1
2

zT 7 � ε � ε0 �I� 2 � />�J� ε0cncT
n ψ̃ K z � σβ̂� zTS

�
x̂ � y� β̂ � f � z � σβ̂

(17)

whereS � 1
2

�	�
ε � ε0 �B� 2 � /C�L� ε0cncT

n ψ̃ � , and σ is a

positiveconstant.Theinclusionof theσβ̂ is a form of
σ-modification.

With suchachoiceof updatelaw, andwith λ � 1
2

�
qm �

2n
ε0

� n
ε � , thenfrom (16),

V̇
�
z� β̃ � x̃�' zT M Nnz � f �8,.� β̂Sz � n

2ε
cncT

n ψ̄1z� ε
2

� 2 � 1E� z �;2 zTSzG � σβ̃β̂ � λx̃T x̃

(18)

To use the vector function f to cancelsomeof the
terms multiplying zT in (18), eachterm must have
lower triangularstructure.The productterm 2 zTSz
however doesnot have the requiredlower triangular
structurenecessaryfor cancellation.It is notedhow-
ever that the term has“symmetric” lower triangular
structure,so it can be split into its lower triangular
part, 2 l , andstrictuppertriangularpart, 2 u, suchthat2 zTSz � 2 l z �32 uz (19)

whereit canbe confirmedthat both 2 l and 2 T
u are

LTd in x̂ andSLTd in f . Defining a positive definite
diagonalmatrixC

�
x̂ � y�H� LTd

�
x̂� , (18)becomes

V̇
�
z� β̃ � x̃�N' zT O Nnz � NT

n z � Cz � f �0P�F2 uz �Q2 T
u zRH� λx̃T x̃

(20)

with P definedasP �
x̂ � y� β̂ � f � � NT

n z � C
�
x̂ � y� z �8, �

x̂ � y� β̂ � f �� β̂Sz � n
2ε

cncT
n ψ̄1z � ε

2
� 2 � 1?� z�F2 l

�
x̂ � y� β̂ � f �%�32 T

u
�
x̂ � y� β̂ � f � (21)

Finally, with PS� LTd
�
x̂� � SLTd

�
f � , thefunction f is

chosensuchthat f
�
x̂ � y� β̂ � � P �

x̂ � y� β̂ � f � hasaunique
solutionandthetransformationis completelydefined.



The Lyapunov function derivative now satisfiesthe
inequality

V̇
�
z� β̃ � x̃��'4� zTC

�
x̂ � y� z � σβ̃2 � λx̃T x̃ � σβ̃β� µ1 � µ2'T� λ0V
�
z� β̃ � x̃�%� σ

2
β2 � µ1 � µ2

(22)

with λ0 � min U cmin � σ
2 � λ

Pmax V andcmin andPmax the

minimum andmaximumeigenvaluesof C andP re-
spectively.

Provided ε andε0 arechosensufficiently large,such
thatλ � 1

2

�
qm � 2n

ε0
� n

ε �XW 0, thentheinequality(22)
is sufficient to ensurerobuststability of thesignalsz,
β̃, andx̃. In theeventthatthenonlinearityΦT �

y� van-
ishesat theorigin, we candiscardtheσ-modification
by settingσ � 0. This achievesglobalstability of the
statesz, β̃, and x̃. Also undertheseconditions,from
LaSalle’s invariancetheorem,wecanfurtherascertain
that both z and x̃ are asymptoticallystable,so that
limt Y ∞ z

�
t � � 0, and limt Y ∞ x̃

�
t � � 0. As y � z1, we

alsothenhavetheasymptoticstabilityof theoutputy,
limt Y ∞ y

�
t � � limt Y ∞ x1

�
t � � 0. With φ

�
0� bounded,

the systemdescriptionimplies that the original state
is also bounded.As the stateestimateconvergesto
the true state,then x̂ is also bounded.If we further
assumethatφ

�
0� � 0, thenit canbeconfirmedthatthe

original stateandthusthe estimateis asymptotically
stable.With further useof LaSalle’s invariancetheo-
rem, it is not difficult to confirm that convergenceof
theparameterestimateto thetrueparameterhowever,
cannotbeguaranteed.

Alternatively, for ΦT �
0�-Z� 0, (22) ensuresthat the

Lyapunov functionV convergesto theset
�
V

�
z� β̃ � x̃� � ' 1

2λ0

7 σβ2 � 2
�
µ1 � µ2 � K (23)

whichgiventhaty2 ' 2V, thenimpliesthattheoutput
convergesto theset�

y

� '\[ 1
λ0

�
σβ2 � 2

�
µ1 � µ2 �	� � (24)

From (24), an appropriatechoice of λ0, dependent
directly on designparameters,allows the output to
convergearbitrarily closeto theorigin.

4. EXAMPLE

Considerthe output regulation of a simple second
ordersystemwith unknown constantsθ1 andθ2, and
with positive integerr W 0.

ẋ1 � x2 � θ1yr

ẋ2 � u � θ2ycosy

y � x1

(25)

Thematrix ΦT is definedas

ΦT �
y� � �

yr 0
0 ycosy � (26)

and satisfiesΦT �
0� � 0. With s � 2

�
r � 1� , from

Assumption2.1

ψ̄1
�
y� � ys � ψ̄2

�
y� � cos2y

Ψ̄
�
y� � ys � cos2y� (27)

Theobserver andstatetransformationis givenby the
following equations:

˙̂x � N2x̂ � k
�
y � ŷ�%� b2u

z1 � y

z2 � x̂2 � f1
�
x̂1 � y� β̂ �

v � u � f2
�
x̂1 � x̂2 � y� β̂ � � (28)

with k � � k1 k2 � T and with the vector function f
definedas:

f1
�
x̂1 � y� β̂ � � �

c1 � k1 � ε
2

� y � k1ŷ � n
2ε

ys] 1� β̂ε
2

7 y � p̄1y
s] 1 � p̄2ycos2yK

f2
�
x̂1 � x̂2 � y� β̂ � � y � c2z2 � �

k2 � k2
1 � �

y � ŷ�� k1x̂2 � ∂ f1
∂y

x̂2 � �
β̂ � 1� ε

2
z2 A ∂ f1

∂y
D 2� ε

2
y2 7 1 � p̄1y

s � p̄2cos2yK A ∂ f1

∂β̂
D� ε

2
z2
2 A ∂ f1

∂β̂
D A ∂ f1

∂y
D 2

(29)

with c1 � c2 � ε W 0 positive constants,and with p̄1 �*
P1

* 2 and p̄2 � *
P2

* 2 denoting the 2-norm of the
first andsecondrow respectively, of apositivedefinite
matrixP. Thecontrollaw andparameterupdatelaw is
thengivenby

u � � f2
�
x̂1 � x̂2 � y� β̂ � (30)

˙̂β � ε
2

�
y2 �

1 � p̄1y
s � p̄2cos2y�� z2

2 A ∂ f1
∂y

D 2̂

(31)

NoticethatasthematrixΦ vanishesattheorigin, there
is no needfor the σ-modificationterm in the update
law, andhenceσ � 0.

For simulationof the above system,the parameters
anddesignconstantsin Table1 areused.FromTable
1, the true parameterβ � *

θ
* 2 � 0 � 26, andwith the

gaink chosenasin Table5.1,theeigenvaluesof A0 �
N2 � kcT

2 are UL� 1 � � 1 V .

Upon simulation,we allow the nonlinearity index r
andtheinitial conditionof theobserver to vary:



System
θ1 0 _ 1
θ2 0 _ 5
r variable

Observer
k ` 2 1a T
Q b 1 0

0 1 c
P b 0_ 5 d 0 _ 5d 0 _ 5 1 _ 5 c

Controller

C b 0_ 1 0
0 0 _ 1 c

ε 4
Initial Conditions

y e 0f 1.5
ŷ e 0f variable

Table1. Parameters and Design Constants

Case 1: r � 1, ŷ
�
0� � 0: Thesimulationresultsfor this

caseareshown in Figures1 and2.

Case 2: r � 2, ŷ
�
0� � 0: Thesimulationresultsfor this

caseareshown in Figures3 and4.

Case 3: r � 2, ŷ
�
0� � y

�
0� : Thesimulationresultsfor

this caseareshown in Figures5 and6.

Notethereducedtimescalein thefiguresshowing the
controleffort.
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A significant characteristicof the simulation is the
quitecomplicatedcontrol law expressionthat results,
consideringthe order of the system.This unfortu-
natelymanifestsitself in largeinitial controleffort.

Thereis alsoasignificantincreasein theinitial control
effort requiredwhen changingfrom r � 1 to r � 2,
that is, changingfrom a linear growth to quadratic
growth. Althouth,at thesametime, thecontrolsignal
settlessignificantly quicker for the later case.The
initial control effort is reducedagainwhenmatching
the initial conditionsof the observer to that of the
system(althoughthe control effort is still markedly
largerthanfor r � 1). For this third case,theobserver
errorremainsquitesmallastheinitial error is zero.It
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is alsointerestingto notethat the parameterestimate
convergesto differentvaluesfor eachsimulation,and
not to the true parametervalue.Onceagain,stability
analysisshows that the controller cannotgaurantee
convergenceof theparameterestimateerrorto zero.
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5. DISCUSSION

Themethoddescribedoffersasignificantreductionin
thetotalcontrollerorder. Theentirecontrollerconsists
of the stateestimator, and the parameterupdatelaw,
which gives a total controller dynamic order of 3.
In comparison,for an adaptive backsteppingsolution
usingMT-Filters,thecontrollerdynamicsincludethe
matrix filter, a stateestimator, anda parameterupdate
law for thewholeparametervector, resultingin a total
controllerorderof 7.

6. CONCLUSION

A new tool for adaptive output feedbackdesignus-
ing a structural,or statetransformationapproachto
backstepping,hasbeendemonstrated.This approach
is conceptuallysimpler, and provides a clearerper-
spective of how backsteppingachievesits goals.The
controlleris constructedby simplyreplacingthoseun-
known anduncertaintermsin the Lyapunov function
derivativewith boundingterms.

Theclassof systemsconsideredhereis not anexten-
sion of thoseconsideredalreadyin the literature,but
in fact a subclass.The methodusedhowever, offers

analternativedesign,which alsoprovidesa degreeof
improvementover existing approaches.Theimprove-
ment is not only in the simplicity of the method,but
importantly, thesignificantreductionin thecontroller
dynamicorder.

The large matrix filters requiredin existing designs,
suchasthosewhich employ MT-Filters or K-Filters,
arenot required.As well, parametrisationis alsomin-
imised,wherebyonly a singlescalarparameteresti-
mateis required.Particularlyfor systemswith several
unknown parameters,this reductionin the total con-
troller dynamicorder is substantialand thus signifi-
cant.

The price paid for this dramaticreductionis first of
all, a requirementthat for asymptoticstability of the
output, the nonlinearitiesthat multiply the unknown
parametervectormustvanishat the origin. With re-
duceddynamicorder, alsocomesa moreconservative
controller. But perhapsmostimportantly, aswasseen
in thesimulationexample,theresultingcontrol law is
potentially quite complicated,producingalso poten-
tially veryhigh controlactivity.
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