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Abstract:

It is the intent of this paper to add to, and improve the existing design tools for nonlinear
output feedback systems. Considered here are systems, exhibiting parametric uncertainty,
and containing nonlinearities dependent on the output alone. A lower triangular state
transformation is utilised, equivalent to that obtained via the traditional and recursive
backstepping algorithm. Extra damping is introduced to counter the uncertainty and observer
error effects. The benefits of this approach lie in the significant reduction in total controller
dynamic order, as well as the simplicity and clarity provided by implementing backstepping
from a purely structural perspectiv@opyright(© 2002 IFAC
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1. INTRODUCTION known parameters that are present, the larger the size
of the matrix filter. The controller, in its entirety, can

The introduction of backstepping, and subsequently, therefore potentially be quite large in dynamic order.
adaptive backstepping, over a decade ago, provided aJsing K-Filters for example, the total dynamic order
great step forward, including the possibility of solving of the filters alone (not including adaption and without
many more control problems, particularly for nonlin- uncertainty on the input coefficients) can be minimally
ear systems satisfying a triangular structure condition (n— 1)(q+ 1), wheren is the state dimension, arg

(Krsti€ et al., 1995). is the size of the uncertainty vector. For MT-Filters,
a similar order applies, however plus the order of a

Early adaptive state feedback results exhibited over-
separate observer.

parametrisation, a trend which was removed by the
introduction oftuning functions(see also (Krstiget In addition to the large dynamic order of the controller,
al., 1995)). For output feedback backstepping designs,the methods tend to be quite complicated, particularly
overparametrisation was also a characteristic early onwhen implemented by the traditional recursive back-
in (Marino and Tomei, 1993) and (Kanellakopoulos stepping approach.

et al, 1991). Not unlike state feedback designs, the N

tuning functions method was also used for output The method' presented here significantly re.d“C‘f’? the
feedback systems in (Krstit al, 1994), and (Krsti¢ total dynamlc order of the controllgr and smpln‘les
and Kokotovit, 1994), to remove the overparametrisa- the design. In fact, t he Igrge_matnx_ filters tradlt_|onally
tion. Two approaches were developed which used theused are not required in this design. The price paid

tuning functions ideaK-Filters (Kreisselmeier, 1977), for SUC? a de5|%n 'f at nt:.cla{e c;):lhservattlvi cogtrc;lktar,
andMT-Filters (Marino and Tomei, 1993). guaranteeing robust stability of Ihe output and state.

Asymptotic stability of the state and output requires
Both methods introduced a series of filters, often in- the nonlinearities to vanish at the origin. The result

cluding large matrix filters, to observe and, in the case is presented for systems where parametric uncertainty
of MT-Filters, transform the system. The more un-



existsin the nonlinearoutputfeedbacktiermsonly. It
shouldbe statedthat systemsonsideredn the litera-
ture alsoallow lower relative degreesanduncertainty
in theinput coeficients.Thesesystemsrenotconsid-
eredherefor simplicity and clarity, andalsobecause
existingtechniquessuchasthosecontainedn (Krsti¢
etal., 1995),canbe appliedto extendthis methodso
asto handlethis classof systems.

Thedesignutilisesalowertriangularstatetransforma-
tion, equivalentto thatwhich would be obtainedvia a
recursve backsteppinglgorithm.This affordsamore
structuralapproachandit is hoped,a clearersolution
to theproblem.

1.1 Notation

Some terminology listed below is introduced in
(Clementsand Jiang, 1999) but is repeatecdhere for
corvenience.

e A vector or matrix function f of x haslower
triangular dependencm x if thei-th component
or row is a function of xi,...,% only. Thenf is
saidtobeLTd inx or f € LTd(x).

e A vectoror matrix function f of x hasstrictly
lowertriangular dependenci x if thei-th com-
ponentor row is a function of xi,...,x_1 only.
Thenf issaidtobeSLTd inx or f € SLTd(X).

e With I, an n-th orderidentity matrix, denotean
n" ordershift matrix N, € O™" andinputmatrix
b, e 0" as:

o[ well o

Further introducethefollowing definitions:

Definition1.1. For amatrix A € O™™M, definethe ma-
trix quantity

n m p
o= (S3ar). @
i=1j=

Definition1.2. For a matrix A with rows a, (i =
1,...,n), and a positive integer p, definea positive
diagonalmatrix Dp[A] to be
[laal|?
DplA] = : 3
[ERS

2. SYSTEMDESCRIPTION

Considettheclassof uncertaimonlinearsystemswith
thefollowing description:

X = NoX+@(y) + @' (y)8+bnu

y = Chx

(4)

wherex € O" is the state,unavailable for feedback,
u,y € O aretheinput andoutputrespectiely, 8 is an
unknown but constanparametevector andg andd’
are known vectorandmatrix functionsof the output
respectrely. Assumethefollowing:

Assumptior2.1. The matrix function ®' (y) satisfies
®T(0) = @} for someconstantmatrix ®f. Further
with ®(y) = ®(y) — ®g, andfor continuous,smooth
functionsW(y), and, 1<i <n,

[o(y) — Pol2=[P(Y)2 = Y?W(Y)
[[®i(y) — Pol|? = [Bi()1? = y?

where®/ (y) and®g; arethei-th rows of ®T (y) and
] respectiely.

3. THE CONTROLLER DESIGN

As the stateis unavailable, a state estimate,X, is
introducedandobsener dynamicsgivenby

% = N+ @(y) + k(y—¥) + bnu

. (6)
y

ok

Thegaink is chosersuchthatAg = N, — k¢ isastable
matrix. Using (6), the stateestimationerrorX = x — X,
hasthe following dynamics

X = Agk+ DT (y)6. (7)

Thatis, a stablefilter drivenby the unknavn 6. Now,
introducea new statez, and auxiliary input v, via a
statetransformatiorandfull statefeedback

z=%+NTf(%Y,B) + ca(y—Y) 8)
v=u-+b] f(%,y,p) ©)

Wherefi is an estimateof the unknowvn parameter
B =|6]|?, and f is avectorfunctionto be determined.
Itisassumedhat f € LTd(X), howevernostructureis
assumedhn y or 3.

By denotingthe quantitiesF(X,y,B) = Ozf(X,V,B),

(%Y, B) = OyF(R,y,B), andFs(%,y, B) = 05 F (%, B),
andignoring function dependencéor simplicity, the
z-dynamicsareobtainedby differentiating(8),

2 = R4+ N (F&+ Ry+ Faf) + cnch X 10)
= Nnz— f+ X+ 9 00+ Z%+ W

with v = 0, and where the terms X, ,Z, W €
LTd(X),SLTd(f) aredefinedas



X(%Y,B, T) = NT Fu(No&+ @+ k(y—9))

+(@+K(y—9) +Ni Rcl (NR+ )
(%y,B, ) =NI Ry + ¢ (11)
,f) = NTFyel N + cncl Ao

=NJFg

2

From (10), the zdynamicsare dependenbn the un-
knowns 8 andX, andthe yet to be determinedupdate

law [3 A candidatd_yapuna functionis introduced,

~ 1 1~ 15 .
V(z,B,%) = §ZTZ+ EBZ+ EXTPX (12)

wherefﬁ =pB- fﬁ is the parameteestimateerror, and
P is a positive definite matrix which satisfiesPAg +
AJP < -Q< 0, for someQ.

Thederivative of V is thengivenby

V(z,B,%) <

+ZR+ W

Z' (Nnz— f+ X+ 9®]0
(13)
)——x QR+ X POTH

with ®] (y) denotingthefirst row of ®T (y). Theprod-
uct termswith respecto theunknowvn 6 andX, canbe
appropriatelyboundedusing Young's inequality For
positive constantg andeg, thenwith somemanipula-
tion, we have

Zyole=2"90"d1+2" 90 Doy +

< g(s+ £0)Z' Do[Y]z+ z—lzTchIq_Jl(y)z

T oo ET Nerg
z' Z% < 52 Do[Z]z+ % X (14)

TPOTO = ii Xi piJ-(D-TG

S% R+ 12 +&2Tcncnl’ll(y, P)z
with
n PR—
Dy,P) = > pii(y)
B " (15)
Pi = Z p|21
j=1
Hereul——||¢01||zandll2— 5 Zipluq)OJ” are

constants,p;j is the (i, j)-th elementof P, and we
haveusedy =z; = ZTCn Also importantly it is easily
confirmedthat o[, Do[ Z] € LTA(X), SLTd(f).

Now, returningto theLyapuna functionderivative,V
now satisfies

V (28,9
rd [an— f+X+ }[3<(s+80)ﬂ>z[9’]

+£0CnCp IIJ) Z+ —CnCl 1+ = Q)z[Z]z (16)

2t
+wp|+B [B+ z ((s+80)@z[7]

1 2n n\ ..
+£oCnCIIIJ) z] -5 (qm— o E) T

wheregm denoteshe smallesteigervalue of Q. The
inequality (16) suggestghe following parameteup-
datelaw

B= 32 «w@%m+md®b¢(m
=z S()’z:y7B7f)Z_O-B
where S= 3((& +£0) D2[] + €otacy §), and o is &

positive constantTheinclusionof the of3 is aform of
o-modification.

With suchachoiceof updatdaw, andwith A = (g —
20 _ 1), thenfrom (16),

€
V (zB,%)
[an— f+ X+ BSZ+ CnCn iz (1g)

+§Q)2[Z]z+ W' +0[3[3—)\>?T>?

To usethe vector function f to cancelsomeof the
terms multiplying z' in (18), eachterm must have
lower triangularstructure.The productterm Wz' Sz
however doesnot have the requiredlower triangular
structurenecessaryor cancellation.t is notedhow-
ever that the term has“symmetric” lower triangular
structure,so it can be split into its lower triangular
part, M{, andstrictuppertriangularpart, #/,, suchthat

WZ'Sz= Mz+ Wz (19)

whereit canbe confirmedthat both %] and W] are
LTd in X andSLTd in f. Defining a positive definite
diagonalmatrixC(%X,y) € LTd(X), (18) becomes

V(zB,% < 2 [Niz—=NJz—Cz—f+ 4

20
+Woz— W, Z] — AR (20)
with # definedas
:H<£mé,)=NTz+C&yﬂ+xxxmén)
+BSz+ CnCn P1z+~ Q)z[z] (21)

+wam&)+wﬂm%&)

Finally, with # € LTd(%), SLTd(f), thefunction f is
chosersuchthat f (X,y,B) = #(X,Y, B, f) hasaunique
solutionandthetransformatioris completelydefined.



The Lyapunw function derivative now satisfiesthe
inequality

V (z,B,%) < —Z'C(R,y)z— oP2 — AKX+ oPp

+H1+ W2 (22)

~ g
—AoV(zB,X) + EBZ+ M1+ L2

. . A
with Ag = min{Cmin, g, ——1} and Cmin and Pyax the
2’ Pmax

- . - m.
minimum and maximumeigervaluesof C andP re-
spectvely.

Provided € and so are chosensuficiently large, such
thatA = 2(qm— o 7) > 0, thentheinequality (22)

is sufficient to ensurerobuststability of the signalsz,

B, andX. In theeventthatthe nonlinearity®' (y) van-

ishesat the origin, we candiscardthe a-modification
by settingo = 0. This achiesesglobal stability of the

statesz, B, andX. Also undertheseconditions,from

LaSallesinvariancegheoremwe canfurtherascertain
that both z and X are asymptoticallystable,so that
lim{ez(t) = 0, andlimiL0 X(t) = 0. As y = 73, we

alsothenhave the asymptoticstability of the outputy,

liMi—e Y(t) = limise0 X1 (t) = 0. With ¢(0) bounded,
the systemdescriptionimplies that the original state
is also bounded.As the state estimatecorvergesto

the true state,then X is also bounded.If we further
assumehat@(0) = 0, thenit canbeconfirmedthatthe

original stateand thusthe estimateis asymptotically
stable.With further useof LaSalles invariancetheo-
rem, it is not difficult to confirm that corvergenceof

the parameteestimateto the true parametehowever,

cannotbe guaranteed.

Alternatively, for ®T(0) # 0, (22) ensuresthat the
Lyapunw functionV corvergesto the set

V(2 p9) < ZAiO (23)

(0B% + 2(ky + 12))

which giventhaty? < 2V, thenimpliesthatthe output
corvergesto theset

i< \/ (OB + 24+ 10)). (24)

From (24), an appropriatechoice of Ao, dependent
directly on designparametersallows the output to
corvergearbitrarily closeto theorigin.

4. EXAMPLE

Considerthe output regulation of a simple second
ordersystemwith unknavn constant$; and®,, and
with positiveintegerr > 0.

X1 = xz+61y’

X2 = U+ Bzycosy

y =X

(25)

Thematrix®' is definedas

0= "% yeoy|

0 ycosy (26)

and satisfies®" (0) = 0. With s = 2(r — 1), from
Assumption2.1
Puly) = Y%, Pa(y) = coSy

Y(y) = y°+cosy. @

The obsener andstatetransformatioris givenby the
following equations:

% = NoX+k(y—
L=y
2 = %o+ f1(%1,Y;B)

U+ fo(Re,%2,Y,B).

y) + bou

(28)

\Y

with k = [ky ko] and with the vector function f
definedas:

fl()zl; Y, B)
BE (

(ci+ki+ = )y k1Y+ yHl

y+ pry* + prycoy)

fz(Xl,X2,Y; B) =y+czo+ (ko — K)(y—9)

o 9fi. o~ e af12

f
+5 y2 (1+ P1y*+ P2cogy) ( a[sl>
of1\ [0f1
(%) (%)
with c;,¢2,€ > 0 positive constantsand with p; =
IP1[|? and pz = ||P.||> denotingthe 2-norm of the
firstandsecondow respectiely, of a positive definite

matrix P. The controllaw andparameteupdatdaw is
thengivenby

(29)

—fa(%,%2,Y; B) (30)
B= g[ (14 P1y*+ Pacoy)
o,
A

Noticethatasthematrix ® vanishesttheorigin, there
is no needfor the o-modificationtermin the update
law, andhenceo = 0.

For simulation of the above system,the parameters
anddesignconstantsn Table1 areused.From Table
1, the true paramete3 = ||6]|? = 0.26, andwith the
gaink choserasin Table5.1,theeigervaluesof Ag =
N; —ke) are{—1,-1}.

Upon simulation,we allow the nonlinearityindex r
andtheinitial conditionof theobsenerto vary:



System

01 0.1
0, 0.5
r variable
Observer
k 2 1
10
Q 01
05 -05
P {—0.5 15 }
Controller
01 0
c %ol
€ 4
Initial Conditions
y(0) 15
y(0) variable

Tablel. Parameters and Design Constants

Case 1: r =1, §(0) = 0: Thesimulationresultsfor this
caseareshown in Figuresl and2.

Case2: r = 2, §(0) = 0: Thesimulationresultsfor this
caseareshovnin Figures3 and4.

Case 3: r = 2, ¥(0) = y(0): Thesimulationresultsfor
this caseareshown in Figures5 and6.

Notethereducedime scalein thefiguresshaving the
controleffort.
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Fig.1.r =1and y(0) =0

A significant characteristicof the simulationis the
quite complicatedcontrol law expressiorthatresults,
consideringthe order of the system.This unfortu-
natelymanifeststself in largeinitial controleffort.

Thereis alsoasignificantincreasen theinitial control
effort requiredwhen changingfromr =1tor = 2,

that is, changingfrom a linear growth to quadratic
growth. Althouth, at the sametime, the control signal
settlessignificantly quicker for the later case.The
initial control effort is reducedagainwhenmatching
the initial conditionsof the obserer to that of the
system(althoughthe control effort is still markedly
largerthanfor r = 1). For this third casethe obsenrer
errorremainsquite smallastheinitial erroris zero.It
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Fig.2.r=1and y(0) =0
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Fig.3.r=2and y(0) =0
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Fig.4.r =2and y(0) =0

is alsointerestingto notethatthe parameteestimate
convergesto differentvaluesfor eachsimulation,and
not to the true parametewralue. Onceagain,stability
analysisshaws that the controller cannotgaurantee
corvergenceof the parameteestimateerrorto zero.
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Fig.5.r = 2 and y(0) = y(0)
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Fig.6.r = 2 and y(0) = y(0)
5. DISCUSSION

Themethoddescribedffersasignificantreductionin
thetotal controllerorder Theentirecontrollerconsists
of the stateestimatoy and the parameteupdatelaw,
which gives a total controller dynamic order of 3.
In comparisonfor an adaptve backsteppingolution
usingMT-Filters, the controllerdynamicsincludethe
matrix filter, a stateestimatoranda parameteupdate
law for thewholeparametewector, resultingin atotal
controllerorderof 7.

6. CONCLUSION

A new tool for adaptve output feedbackdesignus-

ing a structural,or statetransformationapproachto

backsteppinghasbeendemonstratedThis approach
is conceptuallysimpler, and provides a clearerper

spectve of how backsteppingchievesits goals.The

controlleris constructedy simply replacingthoseun-

known anduncertaintermsin the Lyapuna function

derivative with boundingterms.

The classof systemsconsiderechereis not an exten-
sion of thoseconsideredhlreadyin the literature,but
in fact a subclassThe methodusedhowever, offers

analternatve design,which alsoprovidesa degreeof
improvementover existing approachesTheimprove-
mentis not only in the simplicity of the method,but
importantly the significantreductionin the controller
dynamicordet

The large matrix filters requiredin existing designs,
suchasthosewhich employ MT-Filters or K-Filters,

arenotrequired As well, parametrisatiofs alsomin-

imised, wherebyonly a single scalarparameteresti-
mateis required.Particularlyfor systemswith several

unknown parametersthis reductionin the total con-
troller dynamicorderis substantialand thus signifi-

cant.

The price paid for this dramaticreductionis first of
all, a requirementhat for asymptoticstability of the
output, the nonlinearitiesthat multiply the unknavn
parametewrector mustvanishat the origin. With re-
duceddynamicorder, alsocomesa moreconserative
controller But perhapanostimportantly aswasseen
in the simulationexample,theresultingcontrollaw is
potentially quite complicated producingalso poten-
tially very high controlactiity.
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