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Abstract: A method for adaptive and recursive estimation in a class of non-linear autore-
gressive models with external input is proposed. The model class considered is conditionally
parametric ARX-models (CPARX-models), which is conventional ARX-models in which the
parameters are replaced by smooth, but otherwise unknown, functions of a low-dimensional
input process. These coefficient-functions are estimated adaptively and recursively without
specifying a global parametric form, i.e. the method allows for on-line tracking of the
coefficient-functions. The usefulness of the method is illustrated using prediction of power
production from wind farms as an example. A CPARX model for predicting the power pro-
duction is suggested and the coefficient-functions are estimated using the proposed method.
The new models are evaluated for five wind farms in Denmark as well as one wind farm in
Spain. It is shown that the predictions based on conditional parametric models are superior to
the predictions obtained by previously identified parametric models.
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1. INTRODUCTION

The conditional parametric ARX-model (CPARX-
model) is a non-linear model formulated as a lin-
ear ARX-model in which the parameters are replaced
by smooth, but otherwise unknown, functions of one
or more explanatory variables. These functions are
called coefficient-functions. In (Nielsen, Nielsen &
Madsen 1997) this class of models is used in relation
to district heating systems to model the non-linear
dynamic response of network temperature on supply
temperature and flow at the plant. A particular feature
of district heating systems is, that the response on sup-
ply temperature depends on the flow. This is modelled
by describing the relation between temperatures by an
ARX-model in which the coefficients depend on the
flow.

For on-line applications it is advantageous to al-
low the function estimates to be modified as data

become available. Furthermore, because the system
may change slowly over time, observations should be
down-weighted as they become older. For this reason
a time-adaptive and recursive estimation method is
proposed. Essentially, the estimates at each time step
are the solution to a set of weighted least squares re-
gressions and therefore the estimates are unique under
quite general conditions. For this reason the proposed
method provides a simple way to perform adaptive
and recursive estimation in a class of non-linear mod-
els. The method is a combination of the recursive
least squares with exponential forgetting (Ljung &
Söderström 1983) and locally weighted polynomial
regression (Cleveland & Devlin 1988). In the paper
adaptive estimationis used to denote, that old observa-
tions are down-weighted, i.e. in the sense ofadaptive
in time.

The method is illustrated using prediction of power
production from wind farms as an example. Condi-
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tional parametric models are used to describe the rela-
tionship between observed power production and me-
teorological forecasts of wind speed and wind direc-
tion – the power curve – as well as the wind direction
dependency in the dynamic behavior of a wind farm.
These relationships are difficult to parametrize explic-
itly, but can, as it will be shown, readily be captured
by conditional parametric models.

The time-adaptivity of the estimation is an important
property in this application of the method as the to-
tal system consisting of wind farm, surroundings and
numerical weather prediction (NWP) model will be
subject to changes over time. This is caused by effects
such as aging of the wind turbines, changes in the sur-
rounding vegetation and maybe most importantly due
to changes in the NWP models used by the weather
service.

The proposed models are implemented in an on-line
application for wind power prediction - the Wind
Power Prediction Tool (WPPT) - which is used op-
erationally by several of the Danish electrical utilities.
WPPT has previously used more traditional (linear)
parametric models for power prediction but it will
be shown that conditional parametric models implies
a significant improvement of the prediction perfor-
mance compared to more traditional parametric mod-
els. The two models for short-term prediction are
outlined and the performances are compared for six
different wind farms - five in Denmark and one from
the Zaragoza region in Spain (La Muela). The wind
farm at La Muela is investigated further in (Marti,
Nielsen, Madsen, Navarro & Barquero 2001), where
the performance of the new power prediction model is
evaluated for various wind forecasts.

2. MODEL AND ESTIMATION METHOD

When using a conditional parametric model to model
the responseys the explanatory variables are split in
two groups. One group of variablesxs enter globally
through coefficients depending on the other group of
variablesus, i.e.

ys = xT
s θ (us)+es; s= 1; : : : ;N; (1)

where the responseys is a stochastic variable,us andxs

are explanatory variables,es is i.i.d.N(0;σ2), θ (�) is a
vector of unknown but smooth functions with values,
ands= 1; : : : ;N are observation numbers.

Estimation in the model (1) aims at estimating the
functionsθ (�) within the space spanned by the obser-
vations ofus; s= 1; : : : ;N. The functions are only es-
timated for distinct values of the argumentu. Belowu
denotes one single of these fitting points andθ̂ (u) de-
notes the estimates of the coefficient-functions, when
the functions are evaluated atu.

One solution to the estimation problem is to replace
θ (us) in (1) with a constant vectorθu and fit the

resulting model locally tou, using weighted least
squares

θ̂(u) = argmin
θu

N

∑
s=1

wu(us)(ys�xT
s θu)

2
: (2)

Below two similar methods of allocating weights to
the observations are described. For both methods the
weight functionW : R0 ! R0 is a nowhere increasing
function. In this paper the tri-cube weight function

W(u) =

�
(1�u3)3

; u2 [0;1]
0; u2 [1;∞[

(3)

is used. Hence,W : R0 ! [0;1]

In the case of a spherical kernel the weight on ob-
servations is determined by the Euclidean distance
jjus�ujj betweenus andu, i.e.

ws(u) =W

�
jjus�ujj

h(u)

�
: (4)

A product kernel is characterized by distances being
calculated for one dimension at a time, i.e.

ws(u) = ∏
j

W

�
juj ;s�uj j

h(u)

�
; (5)

where the multiplication is over the dimensions of
u. The scalarh(u) > 0 is called the bandwidth. If
h(u) is constant for all values ofu it is denoted a
fixed bandwidth. Ifh(u) is chosen so that a certain
fraction (α) of the observations fulfilljjus� ujj �
h(u) it is denoted a nearest neighbor bandwidth. If
u has the dimension two or larger, scaling of the
individual elements ofus before applying the method
should be considered, see e.g. (Cleveland & Devlin
1988). Rotating the coordinate system in whichus

is measured may also be relevant. In this study the
models have been estimated using a product kernel
with a fixed bandwidth.

If the bandwidthh(u) is sufficiently small the approxi-
mation ofθ (�) as a constant vector nearu is good. This
implies that a relatively low number of observations is
used to estimateθ (u), resulting in a noisy estimate
or large bias if the bandwidth is increased. See also
the comments on kernel estimates in (Cleveland &
Devlin 1988).

It is, however, well known that locally tou the ele-
ments ofθ (�) may be approximated by polynomials,
and in many cases these will be good approximations
for larger bandwidths than those corresponding to lo-
cal constants. Let us describe how local polynomial
approximations are used in a local least squares set-
ting. Let θ j(�) be the j’th element ofθ (�) and let
pd(u) be a column vector of terms in ad-order poly-
nomial evaluated atu, if for instanceu = [u1 u2]

T

thenp2(u) = [1 u1 u2 u2
1 u1u2 u2

2]
T . Furthermore, let

xs = [x1s: : :xps]
T . With

zT
s =

h
x1;sp

T
d(1)(us) : : :xp;spT

d(p)(us)

i
(6)



and

φ̂T(u) = [φ̂T
1 (u) : : : φ̂T

j (u) : : : φ̂
T
p (u)]; (7)

whereφ̂ j(u) is a column vector of local constant esti-
mates atu corresponding toxj ;spd( j)(us), estimation
is handled as described above, but fitting the linear
model

ys = zT
s φ(u)+es; s= 1; : : : ;N; (8)

locally to u. Hereafter the elements ofθ (u) is esti-
mated by

θ̂ j(u) = pT
d( j)(u) φ̂ j (u); j = 1; : : : p: (9)

This method is identical to the method described in
(Cleveland & Devlin 1988) whenx j = 1 for all j with
the exception that in (Cleveland & Devlin 1988) the
elements ofus used inpd(us) are centered aroundu
and hencepd(us) must be recalculated for each value
of u considered.

Interpolation is used for approximating the estimates
of the coefficient-functions for other values of the
arguments than the fitting points. This interpolation
should only have marginal effect on the estimates.
Therefore, it sets requirements on the number and
placement of the fitting points. If a nearest neighbour
bandwidth is used it is reasonable to select the fitting
points according to the density of the data as it is
done when usingk-d trees (Chambers & Hastie 1991,
Section 8.4.2). However, in this paper the approach
is to select the fitting points on an equidistant grid
and ensure that several fitting points are within the
(smallest) bandwidth so that linear interpolation can
be applied safely.

3. ADAPTIVE ESTIMATION

As pointed out in the previous section local polyno-
mial estimation can be viewed as local constant esti-
mation in a model derived from the original model.
This observation forms the basis of the method sug-
gested. For simplicity the adaptive estimation method
is described as a generalization of exponential forget-
ting. However, the more general forgetting methods
described by Ljung & Söderström (1983) could also
serve as a basis.

Using exponential forgetting and assuming observa-
tions at times = 1; : : : ; t are available, the adaptive
least squares estimate of the parametersφ relating the
explanatory variableszs to the responseys using the
linear modelys = zT

s φ +es is found as

φ̂t = argmin
φ

t

∑
s=1

λ t�s(ys�zT
s φ)2

; (10)

where 0< λ < 1 is called the forgetting factor, see
also (Ljung & Söderström 1983). The estimate can be
seen as a local constant approximation in the direction
of time. This suggests that the estimator may also be

defined locally with respect to some other explanatory
variablesut . If the estimates are defined locally to a
fitting pointu, the adaptive estimate corresponding to
this point can be expressed as

φ̂t(u) = argmin
φu

t

∑
s=1

λ t�swu(us)(ys�zT
s φu)

2
; (11)

Following (Nielsen, Nielsen, Joensen, Madsen &
Holst 2000) the solution to (11) can be found recur-
sively as

φ̂t(u) = φ̂t�1(u)+

wu(ut)R
�1
u;t zt

�
yt �zT

t φ̂t�1(u)
�
: (12)

where
Ru;t = λRu;t�1+wu(ut)ztz

T
t (13)

It is observed that existing numerical procedures for
recursive least squares estimation can be applied by
replacingzt and yt with zt

p
wu(ut) and yt

p
wu(ut),

respectively.

Whenut is far fromu it is clear from (13) thatRu;t �

λRu;t�1. This may result in abruptly changing esti-
mates ifu is not visited regularly. This is considered a
serious practical problem and consequently (13) has to
be modified to ensure that the past is weighted down
only when new information become available, i.e.

Ru;t = λv(wu(ut);λ )Ru;t�1

+wu(ut )ztz
T
t ; (14)

where v(� ;λ ) is a nowhere increasing function on
[0;1] fulfilling v(0;λ ) = 1=λ and v(1;λ ) = 1. Note
that this requires that the weights span the interval
ranging from zero to one. Here only the linear function
v(w;λ ) = 1=λ � (1=λ �1)w is considered. Thus (14)
becomes

Ru;t = (1� (1�λ )wu(ut))Ru;t�1+

wu(ut )ztz
T
t : (15)

It is resonable to denote

λ u
e f f(t) = 1� (1�λ )wu(ut ) (16)

the effective forgetting factorfor point u at time t.
For a further discussion of adaptive estimation of
conditional parametric models see (Joensen, Madsen,
Nielsen & Nielsen 1999).

3.1 Summary of the method

To clarify the method the actual algorithm is briefly
described in this section. It is assumed that at each
time stept measurements of the outputyt and the two
sets of inputsxt and ut are received. The aim is to
obtain adaptive estimates of the coefficient-functions
in the non-linear model (1).



Besidesλ in (13), prior to the application of the al-
gorithm a number of fitting pointsu(i); i = 1; : : : ;nf p
in which the coefficient-functions are to be estimated
has to be selected. Furthermore the bandwidth associ-
ated with each of the fitting pointsh(i); i = 1; : : : ;nf p
and the degrees of the approximating polynomials
d( j); j = 1; : : : ; p have to be selected for each of thep
coefficient-functions. For simplicity the degree of the
approximating polynomial for a particular coefficient-
function will be fixed across fitting points. Finally, ini-
tial estimates of the coefficient-functions in the model
corresponding to local constant estimates, i.e.φ̂0(u

(i)),
must be chosen. Also, the matricesR

u(i)
;0

must be

chosen. One possibility is diag(ε; : : : ;ε), whereε is
a small positive number.

In the following description of the algorithm it will
be assumed thatR

u(i)
;t

is non-singular for all fitting

points. In practice we would just stop updating the
estimates if the matrix become singular. Under the
assumption mentioned the algorithm can be described
as:

For each time stept: Loop over the fitting points
u(i); i = 1; : : : ;nf p and for each fitting point:

� Construct the explanatory variables correspond-
ing to local constant estimates using (6):
zT

t = [x1;tp
T
d(1)(ut) : : :xp;tp

T
d(p)(ut )].

� Calculate the weight using e.g. (4) and (3):
w

u(i)(ut) = (1� (jjut �u(i)jj=h(i))3)3, if

jjut �u(i)jj< h(i) and zero otherwise.
� Find the effective forgetting factor using (16):

λ (i)
e f f

(t) = 1� (1�λ )w
u(i)(ut ).

� UpdateR
u(i)

;t�1
using (15):

R
u(i)

;t
= λ (i)

e f f
(t)R

u(i)
;t�1

+w
u(i)(ut )ztz

T
t .

� Updateφ̂t�1(u
(i)) using (12):

φ̂t(u
(i)) = φ̂t�1(u

(i))

+w
u(i)(ut)R

�1
u(i)

;t
zt

h
yt �zT

t φ̂t�1(u
(i))

i
.

� Calculate the updated local polynomial estimates
of the coefficient-functions using (9):
θ̂ j ;t(u

(i)) = pT
d( j)(u

(i)) φ̂ j ;t (u
(i)); j = 1; : : : p

The algorithm could also be implemented using the
matrix inversion lemma as in (Ljung & Söderström
1983).

4. WIND POWER PREDICTION MODELS

The development of the Wind Power Prediction Tool
(WPPT) began in 1992 and the first test version was
installed at a Danish power utility in 1995. WPPT
went into operational use in 1998 and has since then
been used operationally by must of the Danish power
utilities. During WPPT’s life time several studies have
been carried out to improve the performance of the
power prediction models. Much effort have been dedi-
cated to make best possible use of the available meteo-
rological forecasts e.g. by introducing wind direction

dependency in the power curve and employing addi-
tional explanatory variables besides forecasted wind
speed and wind direction. This section first gives an
overview of the model used in the version of WPPT
which is operational in Denmark today (WPPT ver-
sion 2). Later on the new model (WPPT version 4) is
outlined.

The WPPT2 model (from 1999 – see (Nielsen, Mad-
sen, Nielsen & Tøfting 1999)) was identified on basis
of data from the same five Danish wind farms as is
used in this paper. The model utilizes local power
measurements from the wind farm as well as forecasts
of wind speed from the national weather service. That
is the relationship power production and forecasted
wind speed is independent of forecasted wind direc-
tion. The model is given as

pt+k = a1pt +a2pt�1+bm
1 wm

t+kjt +bm
2 (w

m
t+kjt )

2
+

2

∑
i=1

[cc
i cos

2iπh24
t+k

24
+cs

i sin
2iπh24

t+k

24
]+

m+et+k (17)

wherept is the observed power at timet, wm
t+kjt is the

forecasted wind speed att + k given at timet, h24
t+k is

time of day at timet +k, et+k is a noise term, anda1,
a2, bm

1 , bm
2 , cc

1, cs
1 andm are the time-varying model

parameters which are estimated adaptively.

Predictions of the wind power with an prediction
horizon from 1 hour up to 39 hours are updated every
hour.

The new WPPT models (WPPT4) uses conditional
parametric estimates of wind direction dependent
power curves in the transformation of forecasted wind
speed and wind direction to power. The model is given
as

ppc
t+k

= f (wm
t+kjt ;θ

m
t+kjt ;k)+et+k (18)

ppp
t+k

= a(θ m
t+kjt ;k)pt +b(θ m

t+kjt ;k)p
pc
t+k

+

cc(θ m
t+kjt ;k)cos

2πh24
t+k

24
+

cs(θ m
t+kjt ;k)sin

2πh24
t+k

24
+et+k (19)

whereppc
t+k

is the predicted power production from the
power curve model,ppc

t+k
is the final power prediction

where also autoregressive and diurnal effects are in-
cluded,θ m

t+kjt is the forecasted wind direction andf ,
a, b, cc andcs are smooth time-varying functions to be
estimated as described previously.

Power curve predictions,ppc, with an prediction hori-
zon from 1 hour to 48 hours are updated every six
hours whenever a new wind forecast becomes avail-
able. The final power prediction,ppp, are updated
every hour, but here the maximum prediction hori-
zon depends on the calculation time of the last wind
forecast received. At present the wind forecast from



the Danish Meteorological Institute (DMI) is available
two hours after the calculations are initiate, which
means that the maximum prediction horizon for the
final power prediction model varies between 46 hours
and 40 hours.

5. THE PREDICTION PERFORMANCE

The performance of WPPT2 and WPPT4 has been
compared for five wind farms in Denmark sited at
Dræby, Fjaldene, Hollandsbjerg, Rejsby and Sydthy
and for a wind farm in Spain sited at La Muela in the
Zaragoza region.

For the five Danish wind farms the data set consists
of hourly values of observed power production as well
as forecasted wind speed and wind direction from the
lowest model level (level 31) of the Danish HIRLAM
DKV model (17km grid size) with a prediction hori-
zon from 1 hour to 48 hours in steps of 1 hour. The
data set covers almost an entire year from 1997-05-26
01:00 to 1998-05-18 00:00. In order to exclude effects
of model initialization from the results only the data
from 1998-01-19 00:00 and onward has been used in
the model evaluation.

The Spanish data set consists of hourly values of ob-
served power production for five of the wind turbines
from the wind farm at La Muela and forecasted values
of the 10 meter wind speed and wind direction from
the Spanish HIRLAM model (17km grid size) with a
prediction horizon from 1 hour to 24 hours in steps
of 1 hour. The data set covers the period from 2000-
01-31 12:00 to 2000-08-16 18:00 and again only data
from the last part of the period is used in the model
evaluation – here from 2000-06-16 05:00 and onward.

Figure 1 summaries the prediction performance ob-
tained for the WPPT2 and WPPT4 models as well
as the naive (what you see is what you get) predic-
tor. Degree of explanation (r2), which describes how
large a part of the variability of the observed value
is explained by the prediction, is used as a perfor-
mance measure.r2 should be a number between 0 and
1 where 0 is the score obtained by the mean value
predictor and 1 is the score of the perfect model, i.e.
all variability of the observed value is explained by the
model.

From the figure it is seen that for most of the wind
farms the WPPT4 model gives a clear improvement
compared to the WPPT2 model and for no wind farms
does WPPT4 perform worse that WPPT2.r2 range
from approximately 0.9 for a prediction horizon of 1
hour down to 0.45 to 0.50 for a prediction horizon of
36 hours depending on the wind farm.

The Spanish wind farm at La Muela are situated in
semi-complex terrain as opposed to the Danish wind
farms which all are situated in rather flat terrain. Never
the less the best performance of the WPPT4 model is
found for La Muela. The reason for this, at first glance
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Fig. 1. Degree of explanation for WPPT4 (full line),
WPPT2 (dotted line) and the naive predictor
(dashed line) as a function of prediction horizon
[hours]. From top left to bottom right the results
are for the wind farms at Dræby (DR), Fjaldene
(FJ), Hollandsbjerg (HO), Rejsby (RB), Sydthy
(SY) and La Muela (LMU), Spain.
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Fig. 2. The estimated power curve for Hollandsbjerg.
From bottom left to top right the power curves
correspond to prediction horizons of 0 hours (the
analysis), 12 hours, 24 hours and 36 hours.

unexpected result, can be found in (Marti et al. 2001),
which shows that it is clearly advantages to use the
forecasts of the 10 meter winds as input to the WPPT4
models instead of the forecasts of the model level
winds.

For the two wind farms at Hollandsbjerg and La Muela
the score of the WPPT4 models is much better than
the WPPT2 models. This can be explained by a very
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Fig. 3. The estimated power curve for La Muela.
From bottom left to top right the power curves
correspond to prediction horizons of 0 hours (the
analysis), 6 hours, 12 hours and 24 hours.

pronounced wind direction dependency in the esti-
mated power curve for these two wind farms – see
Figure 2 and 3, which only can be handled by the more
advanced power curve model in WPPT4.

From Figure 1 it is seen that at La Muela the perfor-
mance of the WPPT4 models gets better as the predic-
tion horizon increases. Some of the improvement can
be attributed to a slightly increasing performance of
the wind forecasts as the prediction horizon increases,
and some can be attributed to a strong diurnal variation
in the wind speed (and power production) at La Muela.
The model structure in the power prediction model is
probably sub-optimal for a site with a strong diurnal
variation and a model wherept has been replaced with
a weighted power predictionpw

t+k = w(k)pt + (1�
w(k))pt+k�24 is likely to be better suited for such sites.

6. SUMMARY

In this paper methods for adaptive and recursive esti-
mation in a class of non-linear autoregressive models
with external input are proposed. The model class
considered is conditionally parametric models, which
is a conventional linear model in which the parameters
are replaced by smooth, but otherwise unknown, func-
tions of a low-dimensional input process. These func-
tions are estimated adaptively and recursively without
specifying a global parametric form.

The methods can be seen as generalizations or combi-
nations of recursive least squares with exponential for-
getting (Ljung & Söderström 1983), local polynomial
regression (Cleveland & Devlin 1988), and condi-
tional parametric fits (Anderson, Fang & Olkin 1994).

Hence, the methods constitutes an extension to the
notion of local polynomial estimation.

The method is illustrated using power prediction for
wind farms as an example. Both parametric and con-
ditional parametric models are considered. The pre-
dictions based on conditional parametric models are
shown to be superior to the predictions obtained by
state-of-the-art parametric models. The degree of ex-
planation varies from 0.90 for a one-hour prediction
horizon to 0.45 to 0.50 for a 36 hour prediction hori-
zon.
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