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problem which is solved via a Singular Value Decomposition. Copyright ©2002 IFAC
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1. INTRODUCTION

Modelling, identification, and control of nonlinear
systems has been the subject of many research activ-
ities in the last decades. In contrast to linear models
that approximate the system around a given operat-
ing point, nonlinear models are able to describe the
global behaviour of the system over the entire oper-
ating range. One of the most frequently studied class
of nonlinear models is the one that corresponds to the
so-called block-oriented models, which consist of the
interconnection of Linear Time-Invariant (LTI) sys-
tems and static (memoryless) nonlinearities. Among
this class, two of the most frequently studied models
are:

• the Hammerstein model, where the static non-
linearity is followed by a LTI system in a cascade
connection (see (Narendra and Gallman, 1966),

1 Author to whom all correspondence should be addressed.

(Billings, 1980), (Billings and Fakhouri, 1982),
(Eskinat et al., 1991), (Boutayeb and Darouach,
1995), (Pearson and Pottmann, 2000) for dif-
ferent identification algorithms for Hammerstein
models), and

• the Wiener model, in which the order of the
linear and nonlinear blocks in the cascade con-
nection is reversed (see for instance (Greblicki,
1994), (Wigren, 1993), for different identifica-
tion methods for Wiener models).

These models have been successfully used to represent
nonlinear systems in a number of practical applica-
tions in the areas of chemical processes (Eskinat et
al., 1991), (Kalafatis et al., 1995), (Pearson and Pott-
mann, 2000), biological processes (Korenberg, 1973),
signal processing (Stapleton and Bass, 1985), and con-
trol (Fruzzetti et al., 1997).

In recent years, considerable amount of research has
been devoted to the development of new identifica-
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tion methods that are able to deliver reliable state-
space models of multivariable LTI systems directly
from input-output data, and that require a modest
computational load without the need of iterative opti-
mization procedures. These techniques have become
collectively known as Subspace-based State Space
IDentification (4SID) methods (see (Van Overschee
and de Moor, 1994), (Viberg, 1995), and the ref-
erences therein). The methods have their origin in
state-space realization theory as developed in the six-
ties/seventies, and the main computational tools are
QR and Singular Value Decomposition (SVD). Al-
though there is a well developed theory for subspace
methods for LTI systems, this is not the case for non-
linear systems. Among some recent contributions in
this area, the works by Verhaegen and Westwick on
subspace-based identification of MIMO Hammerstein
and Wiener models (Verhaegen and Westwick, 1996),
(Westwick and Verhaegen, 1996), and the works by
Chen and coauthors (Chen and Maciejowski, 2000),
and by Favoreel and coauthors (Favoreel et al., 1999)
on subspace identification of bilinear systems, can be
mentioned.

In this paper, new subspace-based algorithms for the
identification of Hammerstein and Wiener models are
presented. The proposed algorithms consist of two
basic steps. For the Hammerstein model, the first step
is a standard (linear) subspace algorithm applied on an
equivalent linear system whose inputs are filtered (by
the nonlinear functions describing the static nonlinear-
ities) versions of the original inputs, while the second
step consists in a 2-norm minimization problem which
is solved via an SVD. On the other hand, for the
Wiener model, the first step is a standard (linear) sub-
space algorithm applied on an equivalent linear system
whose outputs are filtered (by the nonlinear functions
describing the inverse of the static nonlinearities) ver-
sions of the original outputs, while the second step is
again a 2-norm minimization problem solved via an
SVD.

2. HAMMERSTEIN MODEL IDENTIFICATION

2.1 Problem Formulation

A (multivariable) Hammerstein model is schemati-
cally represented in figure 1. The model consists of a
zero-memory nonlinear element N(·) in cascade with
a Linear Time Invariant (LTI) system with state-space
representation

xk+1 = Axk +Bvk +ωk, (1)

yk = Cxk +Dvk +νk, (2)

where yk ∈ R
m, xk ∈ R

n, vk ∈ R
p, ωk ∈ R

n, and νk ∈
R

m, are the LTI system output, state, input, process
noise and output measurement noise vectors at time
k, respectively, and where A,B,C and D are the (un-
known) system matrices of appropriate dimensions. It

will be assumed that the nonlinear zero-memory block
can be described by a linear combination of basis
functions in the form

vk = N(uk) =
r

∑
i=1

αigi(uk), (3)

where gi(·) : R
p → R

p, (i = 1, · · · ,r), are the assumed
known basis functions, αi ∈ R

p×p, (i = 1, · · · ,r) are
unknown matrix parameters, and where uk ∈ R

p is
the Hammerstein model input vector at time k. Typ-
ically, the basis functions are polynomials 2 , but they
can also be basis functions generated by translations
and dilations of a mother function (e.g., wavelets, or
Radial Basis Functions).
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Fig. 1. Multivariable Hammerstein Model.

The identification problem is to estimate the unknown
parameter matrices αi, (i = 1, · · · ,r), and A,B,C,D,
characterizing the nonlinear and the linear parts of
the system, respectively, and the model order n, from
an N-point data record

{
uk,yk

}N
k=1 of observed input-

output measurements.

2.2 Subspace Identification Algorithm

Substituting equation (3) into (1) and (2), these last
two equations can be written as

xk+1 = Axk +
r

∑
i=1

Bαigi(uk)+ωk, (4)

yk = Cxk +
r

∑
i=1

Dαigi(uk)+νk. (5)

It is clear from equations (4)-(5) that the parame-
terization (1)-(3) is not unique, since any parameter
matrices Bβ , Dβ and β−1αi, for some nonsingular
matrix β ∈ R

p×p, provide the same description (4)-
(5). In other words, any identification experiment can
not distinguish between the parameters B,D,αi and
Bβ ,Dβ ,β−1αi, respectively. To obtain a one-to-one
parameterization, i.e. for the system to be identifiable,
additional contraints must be imposed on the param-
eters. A technique that can be used to obtain unique-
ness is to normalize the parameter matrices αi, that
is to assume for instance that

∥∥αi

∥∥
2 = 1. A similar

methodology was employed in (Bai, 1998) for a scalar
Hammerstein-Wiener model. Under this assumption
the parameterization (1)-(3) is unique.

2 Any smooth function in an interval can be represented accurately
by a polynomial of sufficiently high order.



Defining now B̃ ,
[
Bα1, · · · ,Bαr

]
, D̃ ,

[
Dα1, · · · ,

Dαr], and Uk ,
[
g1(uk)

T , · · · ,gr(uk)
T
]T

, equations
(4) and (5) can be written as

xk+1 = Axk + B̃Uk +ωk, (6)

yk = Cxk + D̃Uk +νk. (7)

Equations (6)-(7) can be interpreted as a state-space
realization of a LTI system whose input Uk is a filtered
(by the assumed known vector fields gi(·)) version of
the original input uk. It is clear then that any available
subspace identification algorithm (such as the N4SID
algorithm by Van Overschee and de Moor (Van Over-
schee and de Moor, 1994), the MOESP algorithm by
Verhaegen (Verhaegen, 1994), or the CVA algorithm
by Larimore (Larimore, 1990), can be employed to

obtain estimates Â,
̂̃B,Ĉ, and ̂̃D of the system matrices

A, B̃,C, and D̃, respectively, from input-output data.

Defining α ,
[
α1,α2, · · · ,αr

]T
, matrices B̃ and D̃ can

be written as B̃ = BαT , and D̃ = DαT , which can be
expressed in a combined form as

[
B̃T D̃T

]T
, ΘBD =

[
B
D

]
αT

. (8)

The problem now is how to compute estimates of the
parameter matrices B,D and α from an estimate Θ̂BD
of the matrix ΘBD. It is clear that the closest, in the
2-norm sense, estimates B̂, D̂ and α̂ are such that

(
B̂, D̂, α̂

)
= argmin

B,D,α

{∥∥∥∥Θ̂BD −

[
B
D

]
αT

∥∥∥∥
2

2

}
. (9)

The solution to this optimization problem is provided
by the SVD (Golub and Van Loan, 1989) of the
matrix Θ̂BD. The result is summarized in the following
Theorem.

Theorem 2.1. Let Θ̂BD ∈ R
(n+m)×rp have rank s > p,

and let the ’economy-size’ SVD of Θ̂BD be given by

Θ̂BD = UsΣsV
T
s =

s

∑
i=1

σiuiv
T
i (10)

where Σs is a diagonal matrix containing the s
nonzero singular values (σi, i = 1, · · · ,s) of Θ̂BD in
nonincreasing order, and where the matrices Us =[
u1 u2 · · · us

]
∈ R

(n+m)×s and Vs =
[
v1 v2 · · · vs

]
∈

R
rp×s contain only the first s columns of the unitary

matrices U ∈ R
(n+m)×(n+m) and V ∈ R

rp×rp provided
by the full SVD of Θ̂BD,

Θ̂BD = UΣV T
, (11)

respectively. Then, the matrices α̂ ∈R
rp×p, B̂ ∈R

n×p,
and D̂ ∈ R

m×p that minimize the norm
∥∥∥∥Θ̂BD −

[
B̂
D̂

]
α̂T

∥∥∥∥
2

2

,

are given by
([

B̂
D̂

]
, α̂

)
=

(
U1Σ1,V1

)
, (12)

where Σ1 = diag
{

σ1,σ2, · · · ,σp
}

, U1 ∈ R
(n+m)×p,

and V1 ∈ R
rp×p, are given by the following partition

of the ’economy size’ SVD in (10),

Θ̂BD =
[
U1 U2

][
Σ1 0
0 Σ2

][
V T

1
V T

2

]
, (13)

and the approximation error is given by
∥∥∥∥Θ̂BD −

[
B̂
D̂

]
α̂T

∥∥∥∥
2

2

= σ 2
p+1. (14)

Proof: The result is a direct application of Theorem
2.5.3 (pp. 72-73) in (Golub and Van Loan, 1989). �

Based on this result, the nonlinear subspace identifica-
tion algorithm can then be summarized as follows.

Algorithm 2.1.

Step 1: Compute estimates
(

Â,
̂̃B,Ĉ,

̂̃D
)

of the

systems matrices
(

A, B̃,C, D̃
)

in (6)-(7) using

any available subspace algorithm for LTI sys-
tems.
Step 2: Based on the estimates ̂̃B and ̂̃D compute
an estimate Θ̂BD of the matrix ΘBD defined in (8).
Step 3: Compute the ’economy size’ SVD of
Θ̂BD as in Theorem 2.1 , and the partition of this
decomposition as in equation (13).
Step 4: Compute the estimates of the parameter

matrices B, D and α as

[
B̂
D̂

]
=U1Σ1, and α̂ =V1,

respectively, with U1, V1 and Σ1 defined as in
Theorem 2.1. �

A similar procedure was suggested in (Rangan et al.,
1995), however the formulation here is more general,
in the sense that any available subspace algorithm can
be used as a first step, and proofs of consistency are
provided that are not given in (Rangan et al., 1995).

Under some assumptions on the persistency of exci-
tation of the inputs (which depend on the particular
subspace identification method used as the first step of

the algorithm 3 ) the estimates
(

Â,
̂̃B,Ĉ,

̂̃D
)

are consis-

tent in the sense that they converge to the ’true’ values
as the number of data points N → ∞. The convergence

of the estimates ̂̃B and ̂̃D implies that of B̂, D̂ and α̂ .
The result is summarized in the following Theorem.

Theorem 2.2. Let ̂̃B and ̂̃D be consistent estimates
computed using the identification Algorithm 2.1.
Then, under the uniqueness condition, the estimates
B̂, D̂, and α̂ provided by Algorithm 2.1 are also consis-
tent, in the sense that B̂

a.s.
−→ B, D̂

a.s.
−→ D, and α̂ a.s.

−→ α ,
respectively, as N → ∞.

3 The reader is referred to (Van Overschee and de Moor, 1994),
(Verhaegen, 1994), and (Larimore, 1990) for the consistency condi-
tions for the N4SID, MOESP, and CVA algorithms, respectively.



Proof: See Appendix. �

3. WIENER MODEL IDENTIFICATION

3.1 Problem Formulation

A (multivariable) Wiener model is schematically de-
picted in figure 2. The model consists of the cascade of
a LTI system followed by a zero-memory nonlinear el-
ement with input-output characteristic given by N(·).
The LTI subsystem has a state-space representation of
the form

xk+1 = Axk +Buk +ωk, (15)

vk = Cxk +Duk +νk, (16)

where A,B,C and D, are the system matrices of ap-
propriate dimensions, and where xk ∈ R

n, vk ∈ R
m,

uk ∈ R
p, and νk ∈ R

m, represent the LTI system state,
output, input, and process noise vectors at time k, re-
spectively. It will be assumed that the nonlinear func-
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Fig. 2. Multivariable Wiener Model.

tion N(·) : R
m → R

m is invertible, and that its inverse
N−1(·) can be described as

N−1(yk) =
r

∑
i=1

αigi(yk) (17)

where now gi(·) : R
m → R

m, (i = 1, · · · ,r), are known
smooth vector fields, and αi ∈ R

m×m, (i = 1, · · · ,r),
are unknown matrix parameters. With this represen-
tation for the static nonlinearity, equation (16) can be
written as

αYk ,
r

∑
i=1

αigi(yk) = Cxk +Duk +νk, (18)

where α ,
[
α1, · · · ,αr

]
, Yk ,

[
gT

1 (yk), · · · ,g
T
r (yk)

]T
.

The Wiener model can then be described as

xk+1 = Axk +Buk +ωk, (19)

Yk = C̃xk + D̃uk + ν̃k, (20)

with C̃ , α†C, D̃ , α†D, ν̃k , α†νk, and where α†

stands for the left pseudoinverse of α . Equations (19)-
(20) can be interpreted as a state-space realization
of a LTI system whose output Yk is a filtered (by
the assumed known vector fields gi(·)) version of the
original output yk. As in the case of the Hammerstein
model, also here any available subspace identification
algorithm can be employed to obtain estimates of the
system matrices A,B,C̃, and D̃ from input-output data.

3.2 Subspace Identification Algorithm

Given estimates of the matrices A,B,C̃, and D̃, the
problem is how to compute estimates of the matrices
C,D and α . Proceeding in a similar way at what was
done for the Hammerstein model, the best (in the mean
squares sense) estimates of matrices C,D and α are
such they minimize the norm

(
Ĉ, D̂, α̂†

)
= argmin

C,D,α†

{∥∥∥
[
̂̃C ̂̃D

]
−α† [

C D
]∥∥∥

2

2

}

(21)
The solution to this minimization problem is provided

by the SVD of the matrix
[
̂̃C ̂̃D

]
. The result is sum-

marized in the following Theorem, which is a re-
statement of Theorem 2.1.

Theorem 3.1. Let
[
̂̃C ̂̃D

]
∈ R

mr×(n+p) have rank s >

m, and let the ’economy-size’ SVD of
[
̂̃C ̂̃D

]
be given

by [
̂̃C ̂̃D

]
= UsΣsV

T
s =

s

∑
i=1

σiuiv
T
i (22)

with similar definitions for the involved matrices as
in Theorem 2.1. Then, the matrices α̂† ∈ R

mr×m, Ĉ ∈
R

m×n, and D̂ ∈ R
m×p that minimize the norm

∥∥∥
[
̂̃C ̂̃D

]
−α† [

C D
]∥∥∥

2

2
,

are given by
(
α̂†

,
[
Ĉ D̂

])
=

(
U1,Σ1V T

1

)
, (23)

where Σ1 = diag
{

σ1,σ2, · · · ,σm
}

, U1 ∈ R
mr×m, and

V1 ∈ R
(n+p)×m, are given by the following partition of

the ’economy size’ SVD in (22),
[
̂̃C ̂̃D

]
=

[
U1 U2

][
Σ1 0
0 Σ2

][
V T

1
V T

2

]
, (24)

and the approximation error is given by
∥∥∥
[
̂̃C ̂̃D

]
− α̂† [

Ĉ D̂
]∥∥∥

2

2
= σ 2

m+1. (25)

Proof: The proof is identical, mutatis mutandi, to the
proof of Theorem 2.1, and therefore it is omitted. �

Based on this result, the Subspace Identification Al-
gorithm for the Wiener model can be summarized as
follows

Algorithm 3.1.

Step 1: Compute estimates

(
Â, B̂,

̂̃C,
̂̃D
)

of the

systems matrices
(

A,B,C̃, D̃
)

in (19)-(20) using

any available subspace algorithm for LTI sys-
tems.
Step 2: Compute the ’economy size’ SVD of[
̂̃C ̂̃D

]
as in Theorem 3.1 , and the partition of

this decomposition as in equation (24).
Step 3: Compute the estimates of the parameter
matrices C, D and α as

[
Ĉ D̂

]
= Σ1V T

1 , and



α̂ = U†
1 , respectively, with U1, V1 and Σ1 defined

as in Theorem 3.1. �

The results on consistency of the estimates presented
in Theorem 2.2 for the Hammerstein model can be
straighforwardly extended to the Wiener model, and
therefore they are omitted here.

4. SIMULATION EXAMPLES

To illustrate the proposed identification schemes, two
simulation examples are presented in this section.

Example 4.1. (Hammerstein Model)
The nonlinear ’true’ system consists of a third order
linear discrete system with transfer function

G(z) =
z2 +0.7z−1.5

z3 +0.9z2 +0.15z+0.002
, (26)

preceded by a static nonlinearity described by a fourth
order polynomial of the form

N
(
uk

)
= 0.8589uk +0.0149u2

k −0.5113u3
k −0.0263u4

k .

(27)
The nonlinear characteristic is shown in solid line in
the left plot of figure 3.
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Fig. 3. Left Plot:True (solid line) and Estimated
(dashed line) nonlinear characteristic (indistin-
guishable one from the other). Rigth Plot: Mea-
sured (solid line) and Estimated (dashed line)
Outputs.

The system was excited with the following input sig-
nal

uk = sin(0.0005πk)+0.5sin(0.0015πk)

+ 0.3sin(0.0025πk)+0.1sin(0.0035πk)+ γk,

where γk is zero-mean Gaussian distributed white
noise with standard deviation σ = 0.001. The output
was corrupted with zero-mean coloured noise with
spectrum Φν(ω) = 0.64×10−8

1.2−0.4cos(ω) .

Algorithm 2.1 was employed to identified the system
from an (N = 8001)-point data record of observed
input-output measurements. Step 1 in Algorithm 2.1
was performed using the N4SID algorithm by Van
Overschee and de Moor (Van Overschee and de Moor,
1994). A third order LTI subsystem was identified.

The estimated transfer function was (compare with the
’true’ transfer function (26))

Ĝ(z) =
0.1797z3 +0.9632z2 +0.6599z−1.5624

z3 +1.2261z2 +0.2388z+0.0019
.

On the other hand, a fourth order polynomial was
used to represent the nonlinear part of the model.
The estimated nonlinear model was (compare with the
’true’ nonlinearity (27))

N̂
(
uk

)
= 0.8594uk +0.0108u2

k −0.5107u3
k −0.0222u4

k .

The estimated nonlinear characteristic is represented
in dashed line in the left plot of figure 3. It can
be observed that it is indistinguishable from the true
nonlinear characteristic.

Finally, the measured (solid line) and estimated (dashed
line) outputs are represented in the right plot of figure
3, where a good agreement between them can be ob-
served. Note the reader that in this case the system
belongs to the model class. �

Example 4.2. (Wiener Model)
In this example, a Wiener model is identified based
on the simulation data of a pH neutralization pro-
cess in a constant volume stirring tank considered
in (Henson and Seborg, 1994), which corresponds
to a bench-scale plant at the University of Califor-
nia, Santa Barbara. The model was derived using the
concept of reaction invariants, and it is highly non-
linear mainly due to the titration curve which mod-
els the output static characteristic (Henson and Se-
borg, 1994). The inputs to the system are the base
flow rate (u1) and the buffer flow rate (u2), in liters
per second, while the output (y) is the pH of the so-
lution in the tank. The system was excited with band
limited white noise around the nominal values of the
base and buffer flow rates. The first six hundred data
were used for the estimation of the model, while the
following five hundred data were used for validation
purposes. The estimation and validation input-output
data are represented in the left plot of figure 4. A
fifth order linear model was estimated, with eigenval-
ues at {0.9508±0.2885i,0.9843±0.0157i,0.9880},
while a third order polynomial was used to represent
the nonlinear part of the model. The true and estimated
output (validation data) are represented in the right
plot of figure 4, where a good agreement between
them can be observed. �

5. CONCLUDING REMARKS

In this paper, new subspace algorithms for the si-
multaneous identification of the linear and nonlinear
parts of Hammerstein and Wiener models have been
presented. The algorithms consist of two basic steps.
The first one is a standard (linear) subspace algorithm,
while the second one is a 2-norm minimization prob-
lem which is solved via an SVD.
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APPENDIX

Proof of Theorem 2.2 Let Θ̂BD be a consistent esti-
mate of ΘBD defined in (8). Noting now that

∥∥∥∥
[

B̂
D̂

]
α̂T −

[
B
D

]
αT

∥∥∥∥
2

2

=

=

∥∥∥∥
[

B̂
D̂

]
α̂T − Θ̂BD + Θ̂BD −

[
B
D

]
αT

∥∥∥∥
2

2

≤

∥∥∥∥
[

B̂
D̂

]
α̂T − Θ̂BD
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2

2

+

∥∥∥∥Θ̂BD −

[
B
D

]
αT

∥∥∥∥
2

2

= σ 2
p+1 +

∥∥∥∥Θ̂BD −

[
B
D

]
αT

∥∥∥∥
2

2
, (28)

and considering that ΘBD is a rank-p matrix, then
∥∥∥∥
[

B̂
D̂

]
α̂T −

[
B
D

]
αT

∥∥∥∥
2

2

a.s.
−→ 0, (29)

as N → ∞. Now, from the uniqueness of the decom-

position

[
B
D

]
αT , it can be concluded that B̂

a.s.
−→ B,

D̂
a.s.
−→ D, and α̂ a.s.

−→ α , what ends the proof. �


