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Abstract: A discrete-time sliding mode with block control aided design is applied to a
nonlinear discrete-time induction motor model where the load torque is considered as
unknown perturbation. With full state measurements, both rotor speed and rotor flux
amplitude tracking objectives are satisfied. Then, a reduced order observer is
implemented where speed and current measurements provide the observation for the
unreachable fluxes and load torque. The smulations predict the system to be robust with
respect to external 1oad torques. Copyright © 2002 IFAC
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1. INTRODUCTION

Induction motor is one of the most used actuator for
industrial  applications due to its reliability,
ruggedness and relatively low cost. The control of
induction motor is challenging, since the dynamical
system is multivariable, coupled, and highly
nonlinear. A classical technique for induction motor
control is field oriented control (Blaschke, 1972),
which involves nonlinear state transformation and
feedback for asymptotic decoupling of the rotor
speed and rotor flux, and applying linear control
methods such as PID. More recently, various
nonlinear control design approaches have been
applied to the induction motor control problem for
better performance, like backstepping (Tan, and
Chang; 1999), passivity (Ortega, et al., 1996),
adaptive input-output linearization (Marino, and
Tomei, 1995), and diding modes (Utkin, et al., 1999;
Doods, 1999). All of these approaches are based on
the continuous-time model of the plant, and for
practical implementation in a digital device, is
necessary to design the controller for a discrete-time
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adiscrete-time model of the plant.

This research work is based on a digital sliding mode
(Utkin, et al., 1999) with block control aided design
approach to achieve rotor speed and rotor flux
amplitude tracking objectives for the fixed reference
frame model. The uncertainty accounted for is an
unknown load torque

The paper is organized as follows. Section 2 briefly
reviews the continuous-time induction motor model
and using the solution of the mechanical and rotor
flux dynamics systems, this model is discretized. The
main results are presented in Section 3, where the
discrete-time sliding mode block control and the
rotor flux and load torque observer, are designed.
Section 4 deals with the proposed control law and
observer simulations. Finally, in Section 5 are some
concluding remarks drawn from simulations and
control technique.

2. DISCRETIZATION OF THE CONTINUOS-
TIME INDUCTION MOTOR MODEL

In this section, it is devel oped another representation
of the induction motor model, called discrete-time



induction motor model. Under the assumptions of
equal mutual inductance and a linear magnetic
circuit, a fifth-order induction motor model is given
as
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following property: z' 0z = 0; the other variables and

parameters have the following definitions: ¥ OR? is

the rotor flux vector, | OR? is the stator current
vector, which in current-fed motors is the control

input, uOR? is the control input voltage vector, w
is the rotor angular velocity, T, isthe load torque,
J istherotor moment of inertia, and
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stator, rotor and mutual inductance respectively, R,
R, are the stator and rotor resistances respectively,
and n, isthe number of pole pairs.

To face the problem of discretization it is necessary
to found the solution of the system, but this system
has no analytic solution a al. To overcome this
problem, the model is divided in a current-fed
induction motor third-order model, where the current
inputs are considered as pseudo-inputs, and a second-
order subsystem that only models the currents of the
stator with voltages as inputs. The current-fed model
will be exactly discretized by solving the set of
differential equations and the other subsystem will be
discretized by a first-order Taylor series (Kazantzis
and Kravaris; 1999). Making use of the following
globally defined change of coordinate:

Y =g Py — g €y

where g =, yi€elds the following bilinear model
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Founding a solution to (2) involves integral
operations, where it is assumed that control is
applied in a piecewise constant fashion. So, the
control is constant over the integration time interval
[KT,(k+D)T], k=012,..., where T>0 is the

sampling time. The solution to (2) in this time
interval is
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Defining acommon notation x, = x(kT). Yields
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where a=¢79T. Taking (3) to the origina states with
ainverse transformation of (1), finally yields
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The rotor position is caculated from §=, in the
same way, yielding
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There are left two differential current eguations to
discretize, by afirst order Taylor series
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Finaly, putting al together, the discrete-time version
of the induction motor model, isfeature
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Fig. 1 compares the open-loop velocity simulation of
both models.
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Fig. 1. Comparison of the continuous and discrete
velocity.



There is a dight amount of error introduced by the
current dynamical eguations that were discretized by
a first order Taylor series. Since the control input
appears in these eguations, the error can be
eliminated.

3. DISCRETE-TIME SLIDING MODE CONTROL

Given full state measurements, the control objectives
are to develop velocity and flux amplitude tracking
for the electromechanical dynamics founded in the
discrete-time induction motor model (4), using block
control and discrete-time diding mode.

3.1 Control design

Let us define the followi ng states as

Ek}(l:l - 50 @m (5)
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wy and y are reference signals. If the resulting

is the rotor flux magnitude,

control, drives the state x} toward zero, then w,
and ¢, will track exactly their respective reference

signals, accomplishing in that way the control
objectives. The system (4) involving (5), can be
represented in the Block Controllable Form (BCF)
consisting of two blocks
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Note that matrices g, and g,, have full rank, that is:
rank(B;) =rank(B,) =2, and

Bi<By  [Bal<B>. @)

Applying the block control technique, define an error

vector, 71 is defined as 7L =(z, )" =x}, then, the
error dynamical equation is

Zhean =1106) + By ()X (8)

Handling x2 as a fictitious control for (8) and

making the error zﬁ to tends to zero, with the

anticipation of its dynamics as follows
Ziewa =110 + By XXk =Kz ©)
where K, =diag{k;,k,} , with k; >0 and k, >0.
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Then, the desired value x2 of x2 is calculated

from (9) as
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It is desired that 2 =,2°. In this way, it is defined a
second new error vector, ;2 as
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The error dynamical equatlon is
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Since al the states varlable are measurable at t| me
‘KT" , the states variables at time ‘(k+1)T are
calculated from (4). It is assumed that the load signal
is constant, so
Tieer =Tk -

The system (6) in the new coordinatesis

ZJR+1 = Klzjli - Blzﬁ (10)
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The next step is to design the control law from the
last results. The first step in sliding mode control is
to choose the surface 5, =0, and, asmart selection is

=7 =

This surface will be zeroing as the state trajectories
reach the surface, and then the control objectives will
be accomplished. The transformed system (10) is
redefined as

ZJI;+1 = KlZJR - BlZE (11)

Sk =12 =By
In order to design a control law, a discrete-time
diding mode version (Utkin, et al., 1999), is
implemented as

Mieq for Hu keqH <up
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where Uieq iscalculated from S, ,; =0 of theform
Ukeq = Bgl[fz]

and u, is the control resources that bound the

control. Proceeding with a stability analysis, where

the case HukeqHs Uy is first analyzed. To reveal the

structure of U, and Sy,,, let us represent them as

the following functions:

Upeq = Bglgz+8k x2 +x§5
and

S =S+H2 ¢ ¢ -Bu,. (1)
In order to decrease |S,| monotonically to zero, it is



necessary to satisfy S,,; —S, <0, and using the
fact that control can vary within HukeqH < Uy, then, the

condition that guarantees diding mode stability, is

calculated as
‘B?ﬁf—x€+x§%s%. (13)

Note that otherwise, the control resources are
insufficient to stabilize the system. Let us turn to the

ukeq

case when HukeqHSUO. Replacing uk:uom in
ke
(12) yields
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due to (13). Hence S| decreases monotonically to
zero, and, after a finite number of steps, |u,|<uq is
achieved, i.e.

S =z§ =00 xﬁ =x§d-
Discrete-time sliding mode will take place from the
following sampling point onwards. Under the

condition (7), the transformed system (11) of order 4,
reducesits order to 2, and it is modeled by

Zio =Ky
This system represents the diding mode dynamics
which achieves the control objectives.
It is an obvious fact that the proposed control

depends on 2 in order to eliminate old dynamics,
but this function depends of control u, squared, due

to term ifj’ﬂz +if+12, that appears in 1, making the
system in that way, unsolvable. To overcome this
problem it is designed an observer only with current
measurements, for the new variable Im, , defined as
follows

Im =ie” +if* .

It isassumed that Im, isconstant, i.e.
My, =1Imy.

Then the observer is presented as the original plant
plus atracking error

|Amk+1 = Imk+ gek
where g, = Imk—imk is the tracking error. Taking
one step ahead

e>|<+1 = (1_ g)QL
it iseasy to see that with the following condition:
2>9>0

the observer error will tends asymptoticaly to zero,
and the estimation Im, will track the real value
Im, . Avoiding the control dependency of u,
squared. Fig. 2 shows a simulation of the observer.
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Fig. 2. (1) Comparison of Im, with imk.

(2) The tracking error.
Again, there is an error that can be eliminated by the
control action.

3.2 Reduced order nonlinear observer

The last control algorithm works with the full state
and parameters measurement assumption. But in
reality, the rotor fluxes and torque measurement is a
difficult task. Here, it is design a reduced order
nonlinear observer for fluxes and load, with the rotor
speed and currents measurements only. System (4) is
written as

Wiar = Wy + 1 Oy =(T/I)T
I =@y +(T/O)uy (14)
Vin =aG Wy +(1-a)MG I
where g, isdefined as
_ modnpTey) —sin(npTw, )0
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The proposed observer for the system (14), assumes

the speed and current measurements, and an
unknown constant |oad

k
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Let & be the difference between the measured rotor
speed and the estimated one, i.e.

& = W~y

Then the following error definition is €., and

represents the difference between the real and the
estimated |oad

L “
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and the difference between rea flux vector and the

estimated one is as follows

e =Wy v k-
Taking one step ahead of the three error equations, it
yields to the dynamical error equations
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A Lyapunov function can be used to proof stability
of ef
_ Ty
V=& &
Taking one step ahead of the Lyapunov function
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The increment of the Lyapunov function should be
negative, and is expressed as
T
AV =&¢ (aZGIGk l 2><2HJ <0
where
(aZGIGk =l 2X2)< 0
or
aZGIGk <| 2%2
With some basic manipulations yields
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wherea = €T . The condition (17) is satisfied due
to the fact that T and ¢ are always positive. So, the
increment of the Lyapunov function is negative

implying that the tracking error tends asymptotically
to zero, i.e.
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Since T is bounded, (16) is reduced to
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Finding suitable |, and |, constants, the system (18)
will be asymptotically stable and the observer (15)
will asymptotically track the plant. A well known
Jury’s stability test (Astrém and Wittenmark; 1997)
criterion for a second order system will help to find
I, and |, . The characteristic equation of (18) is

z2+(|1—1)z+(—|1—%|2):o. (19)
Comparing (19) with an algebraic second order
equation, yields

2+ yz+a,=0
a=(01-1
T
& :(‘|1‘3|2)-
The Jury’s stability test establishes for a second order
system the following conditions
a <1
a>-l+a
a>-l-g
and with some computations the conditions that

make the observer a stable system, are
1<l}<2

I, <0
4. CONTROL LAW SIMULATIONS

Simulations are carried out to demonstrate the
effectiveness of the above discrete-time sliding mode
control and observers. The worst case scenario is
simulated, i.e, the flux magnitude tracks an
exponential signal and the speed tracks a sinusoidal

shape signal. The unknown load torque is proposed
as a noisy sguare shape signal that goes from minus
nominal torque to positive nominal torque. Table 1
shows the induction motor parameters and Table 2
shows the control law parameters.
Table 1. Parameters of the induction motor. It is
considered athree-phase, two-pole machine, with a
stator-referred rotor.

Parameter  Value Description
Rs 14 ohms Stator Resistance
Ls 400 Mh Stator Inductance
M 377 Mh Mutual Inductance
Rr 10.1 ohms Rotor Resistance
Lr 412.8 mH Rotor Inductance
No 2 Number of Pole Pairs
J 0.01 Kgm™2 Moment of Inertia
wWh 168.5 Nominal speed
rad/sec
Tin 1.1 Nm Nominal Load

Table 2. Parameters used in the control law and the

observer.

Parameter Vaue Description

T 0.001 sec Sampling Period
Uo 330 Volts Voltage bound
k 0.9 Control law gain
ko 0.9 Control law gain
ly 0.5 Observer gain

l -0.5 Observer gain

G 19 Observer gain
A©) 0.001 wb Initial condition
‘f’f ©) 0.001 wb Initial condition
z:(0) -0.5 Initial condition
#(0) 05 Initial condition

The flux amplitude tracks an exponential signal at
0.2wb2. The rotor velocity tracks a sinusoidal signal
with peak value of 70 volts and frequency of 3
rad/sec. The load torque is considered as a noisy
square shape signal. Fig. 3 showsthisload signal.

- iy

Time(se)
Fig. 3. Square shape load. The load torque goes from
—1.INmto 1.INm.

Fig. 4 illustrates the speed output signal and its

references, and Fig. 5 shows the tracking error.
Time (sec)

Fig. 4. Speed output signa and its reference. Note
that the output exactly tracks its reference.
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Fig. 5. Tracking error. Note that the error tends
asymptotically to zero.

Fig. 6 shows the flux amplitude output and its
reference signal aswell. And Fig. 7 shows the
tracking error signal.
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Fig. 6. Flux amplitude output signa and its
reference. Note that the output tracks its
reference with a dight amount of error .
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Fig. 7. Tracking error. Note that the error oscillates
around zero.
Fig. 8 shows the flux observer results
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Fig. 8. Flux observation graphs. Note that the
amplitude is well tracked, but, the phase angle
differsalittle bit.

Fig. 9 illudtrates the load observation results. Despite
that the observer models the load as constant load , it
tracks so fine a square shape signal.
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Fig. 9. Observed load and tracking error. Note when
the load change its val ue, the observer response
isfast.

5. CONCLUSIONS

The contributions of this paper can be stated as
follows. The combination of sliding mode and block
control results in a control law that achieves an
excellent performance in the worst case scenario.
With the flux observer it was demonstrated that its
dynamics are stable. The load torque observer
performs well.
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