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Abstract: Two assumptions regarding the synthesis of communication and control
policies for decentralized discrete-event control problems are revisited. In partic-
ular, the construction of information structures that yield certain communication
strategies relies on a specific relationship between the languages describing the
plant and the legal behavior as well as the respective automata for these languages.
An example that satisfies part of the initial assumption but generates a invalid
information structure is presented. Secondly, clarification of an assumption on the
finite nature of some additional procedures used in generating communication and
control policies is provided.
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1. INTRODUCTION

Establishing communication protocols for decen-
tralized controllers of discrete-event systems has
been the focus of recent investigation. These pro-
tocols range from full disclosure of information
among controllers (e.g., pooling of partial obser-
vations or broadcast) (Wong and van Schuppen
1996), (van Schuppen 1998), (Ricker and Rudie
2000b), (Barrett and Lafortune 2000) to commu-
nication of observations from one controller to an-
other along a two-way communication channel —
but not necessarily always two-way broadcast —
in a “minimal” fashion (Rudie et al. 1999), (Ricker
and Rudie 1999), (Ricker and Rudie 2000a) to
the communication of a “flag” that indicates that
something has been observed without disclosing
the specific observation (Ricker and Barrett 2001).

1 This research is supported in part by research grants
from NSERC and Mount Allison University.

It is worth noting that in all these cited works,
communication is assumed to occur without any
delay in the channel.

These protocols rely on the construction of an in-
formation structure to organize the partial obser-
vations of the decentralized controllers. In (Ricker
and Rudie 1999) there are several informal conjec-
tures regarding the nature of the specification of
the plant and the legal language which allowed the
design of communication protocols for a particu-
lar class of decentralized problems. In particular,
there was an assumption that the legal automaton
was always expressed as a subautomaton of the
plant. Secondly, the paper stated that even when
the language was not finite (i.e., the automaton
contains cycles), that to solve the control problem,
it was possible to consider only a finite number of
sequences when trying to identify situations where
a controller should communicate. In the discussion
that follows, the “subautomaton assumption” is
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explained through the use of an example. Addi-
tionally, an algorithm is provided to address the
latter conjecture.

2. BACKGROUND

The results in this paper follow the formulation of
discrete-event systems as initiated in (Ramadge
and Wonham 1987). Only the briefest introduc-
tion to the notation in this paper will be pre-
sented. For more comprehensive background ma-
terial, the reader is referred to (Cassandras and
Lafortune 1999).

The behavior of the system requiring control,
the plant, is represented by sequences constructed
from a non-empty set of symbols called an al-

phabet. The alphabet represents the set of all
possible events that can occur within the system.
Transitions from one system state to another do
not depend on the passage of time, but rather,
on the occurrence of an event. The goal is to
develop a control strategy for an overseer, or su-

pervisor , that will constrain the behavior of the
plant to that of a pre-specified sublanguage (the
legal language). The supervisor averts undesirable
behavior of the plant by either preventing some
events from taking place or allowing—but not
forcing—others to occur.

More formally, the plant is modelled by an au-
tomaton

G = (QG, Σ, δG, qG
0

),

where QG is a set of states; Σ is the alphabet; δG is
the transition function, a partial function δG: Σ×
QG → QG; and qG

0
∈ QG is the initial state. The

definition for δG can be extended to a partial func-
tion for Σ∗ × QG such that δG(ε, qG) := qG and
(∀σ ∈ Σ)(∀t ∈ Σ∗) δG(tσ) := δG(σ, δG(t, qG

0
)).

The set Σ∗ contains all possible finite strings (i.e.,
sequences) over Σ plus the null string ε. The
language generated by G, denoted L(G), is also
called the closed behavior of G:

L(G) := {t | t ∈ Σ∗ and δG(t, qG
0

) is defined}.

This language describes all possible event se-
quences that the discrete-event system can un-
dergo. Thus L(G) ⊆ Σ∗.

The automaton describing the legal behavior, is
denoted by E = (QE , Σ, δE , qE

0
).

The control problem of interest in this paper
assumes that there are n supervisors responsible
for making control decisions about the system.
Each supervisor Si has a partial view of the
system and observes only events in Σi,o ⊆ Σ and
controls only events in Σi,c ⊆ Σ, for i = 1, . . . , n.
We consider here only two local supervisors. To

describe a decentralized supervisor’s view of the
plant, the canonical projection Pi from Σ∗ to Σ∗

i,o

is used, for i = 1, 2.

The projection operator Pi assumes that a su-
pervisor is tracking only the partial view of the
current sequence generated by the plant. Since
a supervisor cannot see every event, there may
be uncertainty as to the exact state the plant is
in. A supervisor could keep track of the possible
states the plant could be in, rather than (or in
addition to) keeping track of a sequence. As an
example, suppose that the plant is in state x and
the occurrence of event σ would lead the plant to
state y (i.e., δG(σ, x) = y). If a supervisor cannot
observe σ, the supervisor will not know whether
the plant is in state x or y. Consequently, we could
describe a supervisor’s view of the current state
of the plant as a set that includes x and y. To
capture the view that Si has of the plant, we use
an observer automaton (Cassandras and Lafor-
tune 1999), based on an algorithm in (Hopcroft
and Ullman 1979) to translate a nondeterministic
finite-state automaton into a deterministic finite-
state automaton.

We will also find it convenient to construct a
finite-state machine that allows us to simultane-
ously track the current state of the plant and the
current state of each supervisor’s projected view
of the plant (via the observer automaton). Such a
structure, which we call a monitoring automaton

and denote by A, is a deterministic version of
the nondeterministic automaton M described in
(Rudie and Willems 1995) 2 . A complete char-
acterization of A is found in (Ricker and Rudie
1999). By the way in which A is constructed, we
have L(A) = L(G).

The strategy for synthesizing control and commu-
nication policies that will be used in this paper
appeared previously in (Ricker and Rudie 1999).
In lieu of including all the technicalities here, the
procedure will be illustrated through an example
in subsequent sections. The important point to
recall for subsequent sections is that supervisors
are not communicating sequences of events that
they have observed. Rather, when a supervisor
communicates, it sends its current set of state es-
timates — states it considers the plant could be in
based on its partial observations of plant behavior.
Finally, all the cited works assume communication
protocols can only be constructed if the system
satisfies observability (Lin and Wonham 1988).

2 A variation of this automaton, called an estimator struc-

ture appears in (Barrett and Lafortune 2000).



3. ASSUMPTIONS

Previously, in (Ricker and Rudie 1999), it was
assumed that not only was L(E) ⊆ L(G) but
E was a subautomaton of G as described in
the context of supervisory control in (Cho and
Marcus 1989) and (Lafortune and Chen 1990).
This assumption will now be justified.

Assumption 1 E is a subautomaton of G such
that QE ⊆ QG, qE

0
= qG

0
and δE(t, qG

0
) =

δG(t, qG
0

) for all t ∈ L(E). This implies that
L(E) ⊆ L(G) but the converse is not true
(Lafortune and Chen 1990). Note that in this
case, it is always possible to alter E and G so
that this additional condition is satisfied with-
out changing the overall plant and legal lan-
guages (see (Cassandras and Lafortune 1999)
for an algorithm).

Assumption 2 It is possible to consider only a
finite number of sequences in L(A) to construct
a decentralized control and communication pol-
icy.

3.1 Justifying Assumption 1

Figure 1 contains a plant G, where L(G) =
(ab)∗f(aab)∗. Suppose that we want to design
a control and communication policy for two
controllers when the legal language L(E) =
(ab)∗faab, where Σ = {a, b, f} such that Σ1,o =
{a} and Σ2,o = {b}. Let Σ1,c = {a}.
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Fig. 1. Plant G generating language L(G) =
(ab)∗f(aab)∗.

Suppose that t′ = abf and t′′ = faabaab: both
these sequences lead to state 2, even though t′ is
legal and t′′ is illegal. Why should this cause any
difficulty? If the supervisors simply communicate
observed events, then it is possible to see that
if S2 communicates after it sees event b, then
S1 would know to disable a after seeing two
consecutive a’s followed by a communication of b

from S1. It is not as straightforward to synthesize
a control and communication policy for the plant
in figure 1 when supervisors communicate sets of
state estimates.

The monitoring automaton A for this plant is
shown in figure 2. Note that the structure of the

(3, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4})

(0, {0, 2}, {0, 1, 2, 3, 4})

(2, {0, 1, 2, 3}, {0, 1, 2, 3, 4})

(1, {0, 1, 2, 3}, {0, 1, 2, 3, 4})

(0, {0, 1, 2, 3}, {0, 1, 2, 3, 4})

(1, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4})

(0, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4})

b

a

ba

(3, {0, 1, 2, 3}, {0, 1, 2, 3, 4})

(4, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4})

(2, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4})

(2, {0, 2}, {0, 1, 2, 3, 4})

a

a

b

a f

a

f

a

a

f

Fig. 2. Monitoring automaton for G in figure 1.

state in the automaton is a triple containing the
true state of the plant, followed by the set of state
estimates for each supervisor (constructed from
the states of the observer automaton). For exam-
ple, state (0, {0, 1, 2, 3}, {0, 1, 2, 3, 4}) represents
the information that after the plant generates the
sequence ab, the true state of the plant is 0, but S1,
which sees only event a, cannot determine if the
observation of event a means the plant is in state
1, or if perhaps unobservable event f happened
before a, in which case the plant would be in state
3, or if after observing a perhaps unobservable
event b occurred making the current plant state 0
or maybe even bf has occurred and the resulting
plant state is really 2. Similar arguments follow for
determining the state estimates of S2: after seeing
b, it considers it possible that the plant is in any
of its states.

To generate a control and communication policy,
the monitoring automaton is used first to deter-
mine whether or not the system is co-observable

(Rudie and Wonham 1992). That is, we check
to see if there could be decentralized supervisors
that would solve the control problem without
communication. A procedure for identifying which
states in the monitoring automaton give rise to
a violation of the property of co-observability is
described in (Ricker and Rudie 1999). If the sys-
tem is observable but not co-observable, we can
identify sequences along which supervisors should
communicate their state estimates, subsequently
allowing the other supervisor to determine its
correct control decisions. This procedure will be
addressed during the discussion of Assumption 2.

Before this test, however, there is a more fun-
damental structural property of the monitoring
automaton that must be avoided. The monitoring
automaton A must not contain a state with the
following characteristic. Suppose that there exists
a state q in A that can be reached via (at least
two) paths (i.e., sequences) s and s′. Note that this
implies the existence of at least one Si that cannot
distinguish s from s′ (i.e., ∃i ∈ {1, 2} such that
Pi(s) = Pi(s

′)). Further suppose that ∃σ ∈ Σi,c



such that σ is defined as a transition from state q

but that sσ, s′σ ∈ L(G) but only sσ ∈ L(E).

Structurally speaking, this creates a problem for
the machinations of the construction of a com-
munication/control policy. The strategy that is
adopted for testing the feasibility of a communica-
tion/control policy assumes that at a given state

of the plant structure it is possible for an om-
nipotent supervisor (i.e., a centralized supervisor
that observed all observable events) to definitively
make a control decision.

In figure 2, state (2, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4}) is
a problem state. If one approaches this state via
the sequence faab, then the next occurrence of a

must be disabled; however if the state is reached
via ababf , then the next occurrence of a must
be enabled. From supervisor 1’s perspective, it
has observed the sequence aa. Even if it was
aware that the system was at state 2, it could
not make the correct control decision because the
two options (“disable a” and “enable” a) are both
valid!

This does not mean that we cannot generate a
communication/control policy for this plant lan-
guage and legal language. As long as the system
is observable, we can continue. The next step is to
make E a subautomaton of G. That is, we want
to ensure that if there exists t′, t′′ ∈ L(G) and
t′ ∈ L(E), t′′ 6∈ L(E) then there will not be q ∈
QE ∩ QG such that q = δE(t′, qE

0
) = δG(t′′, qG

0
).

The resulting plant G′ and legal automaton E ′ is
shown in figure 3. The monitoring automaton for
G′ is shown in figure 4. The dashed lines indicate
that the corresponding transition in G′ represents
an illegal transition.
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Fig. 3. The new legal automaton (collection of
solid-line transitions) and plant automaton
(collection of all transitions) for the system
in figure 1 that satisfies Assumption 1. Illegal
transitions are noted with a dashed line.

3.2 Formalizing Assumption 2

To determine where communication will be incor-
porated into the system, the first task is to use
the monitoring automaton to find sequences that
violate co-observability. That is, we want to locate
sequences s and s′ in L(G), a supervisor Si and
some event σ ∈ Σi,c such that Pi(s) = Pi(s

′)
and sσ ∈ L(E) but s′σ 6∈ L(E). Therefore, after

observing Pi(s) or Pi(s
′), Si cannot make the

correct control decision regarding event σ. In the
monitoring automaton, sequences that are indis-
tinguishable to some Si lead to states in A that
have the same set of state estimates. In (Ricker
and Rudie 1999) such states where s′ occurs are
states where it is formally proven that Si does not
possess sufficient knowledge to make the correct
control decision regarding event σ.

When we find a state where a supervisor lacks
knowledge, we use this state to reconstruct all
such s and s′ pairs that satisfy the conditions
noted above. In figure 4 these states correspond
to states at which an illegal transition is de-
fined. For example, at state (5, {0, 1, 2, 3, 4, 5},
{0, 1, 2, 3, 4, 5,6, 7}), S1 would like to disable
a after faab occurs. Unfortunately, S1 cannot
distinguish this sequence from abab, at state
(0, {0, 1, 2, 3, 4, 5}, {0, 1, 2, 3, 4, 5, 6, 7}), after which
a must be enabled. Note that the local state es-
timates for S1 are the same at both states (i.e.,
{0, 1, 2, 3, 4, 5}). We can find all such sequences by
reconstructing the regular expression that leads to
states where (i) S1’s local view is {0, 1, 2, 3, 4, 5};
and (ii) at that state, a transition of a is defined.
In this case, we would not check all paths to
state (1, {0, 1, 2, 3, 4, 5}, {0, 1, 2, 3, 4, 5, 6, 7}) since
there is no transition involving a defined at that
state. There are well-known algorithms, albeit
with daunting computational complexity, for cal-
culating the unambiguous regular expressions of
sequences in regular languages (e.g., (Hopcroft
and Ullman 1979)).

Once the regular expressions have been calcu-
lated, it is a simple matter of performing language
inclusion tests to isolate those sequences s′ and s

that will be used for designing the decentralized
communication protocol.

For example, the regular expressions to the states
in A where S1 lacks knowledge to make the
correct control decisions are: (5, {0, 1, 2, 3, 4, 5},
{0, 1, 2, 3, 4, 5, 6, 7}) – faab and (5, {0, 1, 2, 3, 4, 5, 6},
{0, 1, 2, 3, 4, 5, 6, 7}) – abfaab+ababfaab. Note that
the state (5, {0, 1, 2, 3, 4, 5, 6, 7}, {0, 1, 2, 3, 4, 5, 6, 7})
was excluded. This omission was intentional. This
is a state which is reachable by a sequence that
has an illegal prefix—namely, faabaab—so it is
assumed that the correct control decision will be
made for the illegal prefix and this state need not
be considered any further.

The corresponding states where the local state es-
timates for S1 are {0,1,2,3,4,5} and {0,1,2,3,4,5,6}
and the regular expressions for all paths to those
states are:

• (0, {0, 1, 2, 3, 4, 5}, {0, 1, 2, 3, 4, 5, 6, 7}):abab
• (2, {0, 1, 2, 3, 4, 5}, {0, 1, 2, 3, 4, 5, 6, 7}):ababf
• (0, {0, 1, 2, 3, 4, 5, 6}, {0, 1, 2, 3, 4, 5, 6, 7}):ababab



• (2, {0, 1, 2, 3, 4, 5, 6}, {0, 1, 2, 3, 4, 5, 6, 7}):abababf

It is then straightforward to identify the pairs of
sequences s′, s that S1 cannot distinguish: faab

and abab, faab and ababf, abfaab and ababab,
abfaab and abababf.

The algorithm for identifying the s′, s sequences
of interest in A is presented below:

Input: A, qA = (q, q1, q2), q′A = (q′, q′
1
, q′

2
), i, Σi,c

Precondition: qi = q′i and ∃σ ∈ Σi,c such that
σ is an illegal transition from q′A but a legal
transition from qA

Output: an automaton M such that L(M) = s+
s′

(1) Calculate the regular expression from the
initial state of A to qA. Call this ρg .

(2) Calculate the regular expression from the
initial state of A to q′A. Call this ρb

(3) Let L(ρg) and L(ρb) be the languages associ-
ated with the respective regular expressions.

(4) Calculate Pi(L(ρg)) and Pi(L(ρb)).
(5) If Pi(L(ρg)) ∩ Pi(L(ρb)) 6= ∅

(a) Calculate ρ1 = P−1(Pi(L(ρg))).
(b) Calculate ρ2 = P−1(Pi(L(ρb))).
(c) Build the automaton for ρ1: M(ρ1).
(d) Build the automaton for ρ2: M(ρ2).
(e) Return M(ρ1) × M(ρ2)

Note that the output from this algorithm can then
be used to determine where to add communication
events to A so that Si can subsequently take
the correct control decision regarding its partial
observation of sσ and s′σ.

The strategy for adding communication to a
decentralized discrete-event system developed in
(Ricker and Rudie 1999) adopts a policy of com-
municating as early as possible. This corresponds
to the first position along the s′, s pairs of se-
quences where one supervisor observes something
that, if the set of state estimates is communicated
at that point, would allow the other supervisor to
eventually distinguish between s′ and s and make
the correct control decision regarding event σ.

For instance, when s′ = abfaab and s = abababf ,
a communication from S2 to S1 along s when
abab occurs (i.e., the set of state estimates to
communicate is {0, 1, 2, 3, 4, 5, 6, 7}), this being
the first place where s differs from s′ to an
observer that sees all observable events. A similar
procedure would take place for all other s′, s pairs.

4. DISCUSSION

This paper presented several clarifications and
corrections of assumptions that were made in
previous analysis on incorporating communication
into decentralized discrete-event control problems.

In particular, the assumption of the subautoma-
ton relationship between the legal behavior and
the plant behavior was clarified. This was done
to reflect some of the idiosyncracies in the to-
pography of information structures that are used
to develop communication and control policies
for this class of control problems. Secondly, it
was suggested that it is of some interest to cal-
culate the regular expressions of all paths from
the initial state of the information structure to
easily identified illegal states—as well as to those
legal states that are indistinguishable from the
illegal states. The regular expressions represent
all possible sequences that lead to both types of
states. Manipulating the language generated by
the regular expressions and subsequently dealing
with the associated automata means that we need
only consider a finite number of families of se-
quences. The finiteness arises from the observation
that the algorithm considers pairs of states in A

where correct control decisions cannot be made
and A itself is a finite structure. The implication
is that there are essentially only a finite number
of sequences or families of sequences to consider
when explicitly incorporating communication into
the description of plant behavior.
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Fig. 4. Monitoring automaton A for the plant G′ in figure 3.
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