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1 INTRODUCTION
Quantitative input-output controllability measures are
key ingredients of a systematic control structure
design (CSD) procedure. Many different aspects
(e.g., model uncertainties, nonlinearity of the process,
input saturation, interactions between the control
loops) must be taken into account. In (Trierweiler,
1997) and (Trierweiler and Engell, 1997a) the Robust
Performance Number (RPN) and the Robust
Performance Number with constant scalings (RPNLR)
were introduced to characterize the IO-controllability
of a system.  Here three new indices based on the
RPN concept are proposed: RPN ratio, RPN
difference, and relative RPN. These new indices
allow us to quantify how far the attainable
performance is from the desired one.

In this paper, we apply these indices to analyze the
controllability of the quadruple-tank process
proposed by Johansson (2000) and the air separation
plant studied in (Trierweiler and Engell, 2000). The
quadruple-tank process is a laboratory process that
consists of four interconnected water tanks. The
linearized dynamic model of the system has a real
multivariable transmission zero which can change its
sign depending on operating conditions. In this way,
the quadruple-tank process is ideal for illustrating
many concepts in multivariable control, particularly
performance limitations due to multivariable RHP
zeros. In the paper, both nonminimum- and
minimum-phase operating points are analyzed and
systematically compared using the RPN concept. The
paper also shows how the RPN methodology can be
applied to controller design.
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The paper is structured as follows: in section 2, the
RPN concept and the new indices are introduced. In
section 3, the quadruple-tank process is described. In
section 4, the IO-controllability analysis is performed
using RPN, RPNLR, RPN ratio, RPN difference, and
relative RPN indices. In section 5, the predictions
based on the RPN concept are confirmed by closed-
loop simulations. Section 6 shows a complementary
example based upon an air separation plant.

2 RPN - A CRITERION FOR CONTROL
STRUCTURE SELECTION

The Robust Performance Number (RPN) was
introduced in (Trierweiler, 1997) and (Trierweiler
and Engell, 1997a) as a measure to characterize the
IO-controllability of a system. The RPN indicates
how potentially difficult it is for a given system to
achieve the desired performance robustly. The RPN
is influenced by both the desired performance of a
system and its degree of directionality.

2.1  The Robust Performance Number
The Robust Performance Number ( RPN, � ) of a
multivariable plant with transfer matrix G(s) is
defined as
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where �*(G(j�)) is the minimized condition number of
G(j�) and �

_
( [I-T] T ) is the maximal singular value

of the transfer function [I-T] T. T is the (attainable)
desired output complementary sensitivity function,
which is determined for the nominal model G(s). �

The minimized condition number, �*(G(j��), is

defined by � �� � � �� �RjGLjG
RL
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,
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� , where L

and R are real, diagonal, and nonsingular scaling
matrices and ���is the Euclidean condition number.
The Euclidean condition number ��of a complex
matrix M is defined as the ratio between the maximal

and minimal singular values, i.e., � � � �
� �M
MM
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The RPN consists of two factors:
1.  �

_
( [I-T] T ). This term acts as a weighting function

and emphasizes the more important region (i.e., the
crossover frequency range) for robust stability and
robust performance relative to the low and high
frequency regions that are less important for
feedback control. For example, a system can have a
high degree of uncertainty at low frequencies, but
nevertheless show no stability and performance

problems. This fact is automatically taken into
account by the function �

_
( [I-T] T ), which has its

peak value in the crossover frequency range. The
choice of T depends on the desired closed-loop
bandwidth, sensor noise, input constraints, and in
particular the nonminimum-phase part of G, i.e.,
RHP zeros, RHP poles, and pure time delays.

2.  ��(G)+1/��(G) . The origin of this term is the result
of computation of the robust performance (RP) of
inverse-based controllers, see (Trierweiler and
Engell, 1997a).

The RPN is a measure of how potentially difficult it
is for a given system to achieve the desired
performance robustly. The easiest way to design a
controller is to use the inverse of process model. An
inverse-based controller will have potentially good
performance robustness only when the RPN is small.
As inverse-based controllers are simple and effective,
it can be concluded that a good control structure
selection is one with a small (< 5) RPN (Trierweiler
and Engell, 1997a).

2.2 RPN-Scaling Procedure
The scaling of the transfer matrix is very important
for the correct analysis of the controllability of a
system and for controller design. In the definition of
�*(G(j��), L and R are frequency dependent; however,
in the design stage L and R are usually constant. The
following procedure based on the RPN is
recommended for use in optimal scaling of a system,
G.

RPN-scaling procedure:

1. Determine the frequency, �sup, where
�(G,T,�) achieves its maximal value.

2. Calculate the scaling matrices, LS and RS,
such that �(LSG(j�sup)RS) achieves its
minimal value, �*(G(j�sup)).

3. Scale the system with the scaling matrices,
LS and RS, i.e., GS(s) = LS G(s) RS

Analysis and controller design should then be
performed with the scaled system, GS.

2.3 RPN with Constant Scalings
The robust performance number with constant
scalings ( RPNLR , �LR ) of a multivariable plant with
transfer matrix G(s) is defined as
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where LS and RS are fixed scaling matrices
corresponding to the scaling matrices that make



�(LS G(j�sup) RS) minimal, i.e., LS and RS are the
scaling matrices calculated by the RPN-scaling
procedure. �

2.4  Attainable Performance
In this section, how the attainable closed-loop
performance can be characterized for systems with
RHP transmission zeros is discussed.

Specification of the desired performance
We specify the desired performance by the (output)
complementary sensitivity function, T, which relates
the reference signal, r, and the output signal, y, in the
one degree of freedom (DOF) control configuration
( see Fig. 1 ). For the SISO case, specifications such
as settling time, rise time, maximal overshoot, and
steady-state error can be mapped into the choice of a
transfer function of the form

12

1
2

����
�

�
��
�

�

�
	 �
�

nn

d
ss

T

�
�

�

�
(3)

where �� is the tolerated offset (steady-state error).
The parameters of equation (3), �n (undamped
natural frequency) and � (damping ratio), can be
easily calculated from the time-domain specifications.

 r y
 - -

Figure 1: Standard feedback configuration

For the MIMO case, a straightforward extension of
this specification is to prescribe a decoupled response
with possibly different parameters for each output,
i.e., Td = diag(Td,1,...,Td,no ), where each Td,i
corresponds to a SISO time-domain specification.

RHP-zero constraint and factorization
If G(s) has a RHP zero at z with output direction yz,
then for internal stability of the feedback system the
controller must not cancel the RHP zero. Thus L=GK
must also have a RHP zero in the same direction as
G, i.e., yz

HG(z) = 0 � yz
HG(z)K(z) = 0. It follows

from T=LS that the interpolation constraints

� � � � H
z

H
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H
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must be satisfied.

When the plant G(s) is asymptotically stable and has
at least as many inputs as outputs, G(s) can be
factored as G(s) = BO,z(s)Gm(s). The possible closed-
loop transfer functions T can then be factored to
satisfy the interpolation constraint (4) as

� �  )( )0( )( =  †
,, sTBsBsT dzOzO (5)

where Td(s) is the ideal desired closed-loop transfer

function and BO,z(s) is the output Blaschke
factorization for the zeros (for the definition of the
Blaschke factorization and an algorithm to calculate
it, see, e.g., (Havre and Skogestad, 1996) or
(Trierweiler, 1997)). BO,z

† denotes the pseudo-inverse
of BO,z , and BO,z(0) BO,z

†(0) = I. It is easy to verify
that (5) implies (4).

T(s) is different from the original desired transfer
function Td(s), but has the same singular values. The
factor BO,z

†(0) ensures that T(0) = Td(0) so that the
steady-state characteristics ( usually Td(0) = I ) are
preserved.

Remarks about the Blaschke Factorization:

1. An alternative to the Blaschke factorization is to
solve a standard optimal LQ control problem.
This procedure is implemented in (Chiang and
Safonov , 1992, see functions iofr and iofc). This
inner-outer factorization requires system G(s) to
be stable and to have no j�-axis or infinite poles
or transmission zeros. In particular, D must have
full rank. This means that for stable strictly
proper systems replacing the matrix D by D�=�I
is necessary if we want to apply this
factorization. Therefore, we prefer not to use this
method and consequently it is not presented here.
The interested reader will find further discussion
and references tot this procedure in (Chiang and
Safonov, 1992).

2. For complex RHP zeros, the corresponding
Blaschke factorization assumes a complex state-
space model realization (Havre and Skogestad,
1996). Since the RPN analysis is based on the
frequency response, this kind of representation
does not impose any kind of limitation on the
system analysis.

2.5  Minimum Possible RPN (RPNMIN )
When the system has a strong nonminimum-phase
behavior (e.g., RHP zero close to origin, large pure
time delays), the attainable and the desired
performances can be considerably different.
Therefore, it is interesting to know the minimum
possible RPN for a given desired performance. It can
be calculated as follows:
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Note that RPNMIN and �MIN are only a function of the
desired performance, Td. The minimum possible
condition number for any system is �*(G(j�)) = 1;
thus the minimum possible value for ��(G)+1/��(G)  is
2. This value is substituted into equation (1) and is
used as the basis for the definition of RPNMIN.



Figure 2 shows an example of RPN, RPNLR, and
RPNMIN plots. The larger the difference between RPN
and RPNMIN plots, the more unrealizable the desired
performance.
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Figure 2: An example of RPN plot (solid line),
RPNLR plot (dashed line), and RPNMIN plot
(dashdot line). Note that the frequency is on a
logarithmic scale so that -4 should be understood as
10-4.
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Figure 3: Schematic representation of AMIN and A-
AMIN.  Note that the frequency is on a logarithmic
scale so that -4 should be understood as 10-4.

2.6 RPN Ratio and RPN Difference
If the areas under the RPNMIN and RPN curves are
calculated, i.e.,
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it is easy to measure how far the curves are from each
other. Based on these areas, the RPN ratio
(RPNRATIO), RPN difference (RPNDIFF), and relative
RPN (RRPN) are defined as follows:
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Figure 3 gives a graphical interpretation of areas AMIN

and A. Note that the areas were calculated for a given
frequency range, [�min, �max], on a  logarithmic scale.
The frequency range must be large enough to capture
the important areas. When RPNRATIO, RPNDIFF, and
RRPN are used as relative measures, a simple finite
interval can be used. But if an absolute measurement
is required, then �min and �max  must tend to 0 and �,
respectively.

3 CASE STUDY: THE QUADRUPLE-TANK
PROCESS

3.1 Process Description
The quadruple-tank process (see Figure 4) is a
laboratory process that consists of four
interconnected water tanks. The linearized dynamic
model of the system has a real multivariable zero,
whose sign can be changed depending on operating
conditions. In this way, the quadruple-tank process is
ideal for illustrating many concepts in multivariable
control, particularly performance limitations due to
multivariable RHP zeros. The location and the
direction of zero have an appealing physical
interpretation. The target is to control the level in the
lower two tanks with the inlet flowrates, F1 and F2.

T1 T2

h3

h1

h4

h2

V1 V2

F2

(1-x1).F1

F1

x1.F1 x2.F2

(1-x2).F2

Figure 4: Schematic diagram of the quadruple-tank
process. The water levels in Tank 1 and Tank 2 are
controlled by the flow rates F1 and F2.

3.2 Process Model
The process model consists of the mass balance
around each tank and is given by
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where Ai is the cross-section area of Tank i, Ri is the
outlet flow coefficient of Tank i, hi is the water level
of Tank i, F1 and F2 are the manipulated inlet
flowrates and x1 and x2 are the valve distribution flow
factors  0 � xi � 1.

The parameters used in this work are basically the
same as those in (Johansson, 2000) and are given by
A1 = A3 = 28 cm2, A2 = A4 = 32 cm2,
R1 = R3 = 3.145 cm2.5/s and R2 = R4 = 2.525 cm2.5/s.

3.3 Operating Points
The quadruple-tank process is studied at a minimum-
phase operating point (MOP) and at a nonminimum-
phase operating point (NMOP), due to the presence
of the RHP transmission zero. Table 1 summarizes
the operating conditions of MOP and NMOP. Note
that the main difference between the OPs is the valve
distribution flow factors, x1 and x2, which are
responsible for the difference in h3 and h4 levels. All
other variables are almost the same for both OPs.

Table 1: Definition of the Operating Points

Variables MOP NMOP

h1, h2 [cm] 12.26,   12.78  12.44,   13.16

h3, h4 [cm]   1.63,    1.41   4.73,     4.99

F1, F2 [cm3/s]  9.99 ,  10.05   9.89,     10.36

x1, x2 [-]     0.7,     0.6   0.43,      0.34

4 RPN ANALYSIS FOR
THE QUADRUPLE TANK

4.1 RHP Zero and RGA
Johansson (2000) shows that the quadruple-tank
system always has two transmission zeros, whose
locations can be classified based on the x1 + x2 value.
When 0 < x1 + x2 <1, one of the transmission zeros is
located in RHP. For the case where  x1 + x2 = 1, the
system has a transmission zero at the origin, whereas
for 1 < x1 + x2 < 2 no RHP zero occurs. Table 2
shows the RHP zero for both OPs. For NMOP, the
input zero direction, uZ, and output zero direction, yZ,
were also included in the table. The steady-state RGA
(see Table 2) clearly shows that the pairing used for
MOP (i.e., (F1, h1) and (F2, h2)) should not be applied
to NMOP.

Table 2: RHP zero and RGA

MOP NMOP

RHP zero none 0.0128

RHP zero input
direction

_
uz = �

�
�
�0.7326

-0.6806  

RHP zero output
direction

_
yz = �

�
�
�-0.7743

0.6329  

RGA(0)

�
�

�
�1.4 -0.4

-0.4 1.4  �
�

�
�-0.64  1.64

1.64 -0.64  
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Figure 5: Dynamic RGA and Minimal Condition
Number for MOP and NMOP

4.2 Dynamic RGA and Minimized Condition
Number
The transfer matrices for MOP and NMOP are
respectively given by
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Here the inputs are (F1, F2) and (h1, h2). Using these
transfer matrices the minimum condition number and
the element (1,1) of the dynamic RGA were
calculated. These results are shown in Figure 5. Note
that for MOP the interaction disappears at high
frequencies. This means that if the controller can be
fast tuned, the control loops will behave like a
completely non interacting system. For NMOP, the
pairing (F1, h2) and (F2, h1) was used in the
calculation. Note that the interaction pattern changes
at around a frequency of 10-2 rad/s. At low



frequencies the best pairing is (F1, h2), but for high
frequencies the pairing (F1, h1) will be much better.
The minimum condition number shows that both OPs
are well conditioned, especially at high frequencies.

4.3 RPN Analysis
Table 3 shows the values of RPN, RPNRATIO,
RPNDIFF, and relative RPN calculated for MOP using
several rise times and 5% overshoot. The
corresponding RPN, RPNLR and RPNMIN plots are
shown in Figure 6. Based on these results, it can be
concluded that for MOP the faster the closed loop,
the better the system performance. The closed-loop
response is only limited by saturation of manipulated
variables.

Table 3: RPN indices for MOP

Rise
Time [s] RPN RPNRATIO RPNDIFF RRPN

1 1.377 1.0239 0.4472 0.024

10 1.378 1.0715 1.4153 0.072

50 1.474 1.1588 3.1000 0.159

100 1.638 1.2119 4.0806 0.212
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Figure 6: RPN plot (solid lines), RPNLR plot (dashed
lines), and RPNMIN plot (dashdot lines) for MOP
calculated using several rise times and 5%
overshoot.

Similarly to Table 3, Table 4 shows the values of
RPN, RPNRATIO, RPNDIFF, and relative RPN
calculated for NMOP using several rise times and 5%
overshoot. The corresponding RPN, RPNLR and
RPNMIN plots are shown in Figure 7. Based on these
results, it can be concluded that for NMOP the faster
the closed loop, the more unrealizable the desired
performance. Here, the closed-loop performance is
limited by the RHP zero at 0.0128. Note that all the

peaks of RPN curves are at around a frequency equal
to the RHP zero, i.e., 	 
 0.0128. If the peak of the
desired performance (i.e., peak of �

_
( [I-Td] Td )) is

above this frequency, the RPN curve shows a flat
region up to the peak of the desired performance.

Table 4: RPN indices for NMOP

Rise
Time [s] RPN RPNRATIO RPNDIFF RRPN

1 2.227 3.765 51.84 2.765

10 2.265 2.679 33.22 1.679

50 2.411 2.135 22.17 1.135

100 2.498 1.952 18.33 0.952
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Figure 7: RPN plot (solid lines), RPNLR plot (dashed
lines), and RPNMIN plot (dashdot lines) for MOP
calculated using several rise times and 5%
overshoot.

It is important to mention that the RPN does not give
a clear idea of the control difficulties for either OP.
But on the other hand, RPNRATIO, RPNDIFF, and
relative RPN can do this very well. The closer
RPNRATIO, RPNDIFF, and RRPN are to 1, 0, and 0,
respectively, the more realizable the desired
performance is. The RRPN seems to be the best index
to compare how far the desired performance is from
the attainable performance. RRPN values larger than
one mean that the desired performance is
unrealizable, values smaller than one means that
desired becomes to be possible. The RRPN value
closer to zero, the easier the controller design.

Usually one is interested in using simple low-order
controllers. When the system’s directionality varies
strongly with frequency, a higher order controller
must be used. To determine how strong this
dependence is, we use the RPNLR plot. Small



differences between RPNLR and RPN plots indicate
that a low-order controller will probably produce
good results. The crossover frequency range (i.e., the
region of the RPN peak) is especially important in
this analysis. The dashed lines in Figures 6 and 7
correspond to the RPNLR plots. It is very difficult to
distinguish them from the RPN plots. Therefore, we
can conclude that good performance can be achieved
by a low-order controller. In fact, increasing the
controller order will not provide any improvement in
control.

5 VERIFICATION OF THE PREDICTIONS BY
CLOSED-LOOP SIMULATIONS

The controllers used in the simulations in Figures 8,
9, and 10 were obtained by applying the frequency
response approximation method described in
(Trierweiler, et al., 2000) and (Engell and Müller,
1993) to the optimally RPN-scaled system (see
section 2.2). The specified closed-loop responses
used in the controller design correspond to the same
attainable performances used to calculate the RPN
curves.

The simulations confirm the predictions made by
RPN, RPNLR , RPNRATIO, RPNDIFF, and RRPN.
Figure 8 shows that for MOP faster responses
produce an almost decoupled setpoint change. For
this OP, the only restriction on attainable
performance is the power of the control action. If the
control action is not fast enough, the levels of the
tank start interacting with each other. This behavior
has already been predicted by the dynamic RGA (cf.
Figure 5).
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Figure 8: Setpoint change in h1 and disturbance
rejection capacity for MOP: decentralized PI
controller with 10 s rise time (solid line), full PI
controller with 50 s rise time (dashed line),
decentralized PI controller with 50 s rise time
(dashdot line), and decentralized PI controller with
100 s rise time (dotted line).

Figures 9 and 10 show the closed-loop simulation for
NMOP. In these figures, first the setpoint is changed
in the worst possible direction, which corresponds to

the output RHP zero direction (yz), and the
disturbance rejection capacity is tested against the
worst possible direction, which is given by the input
RHP zero direction (uz). Both yz and uz are given in
Table 2. Figure 9 clearly shows that it is not possible
to have a rise time faster than 100 s. Here the RHP
zero at 0.0128 restricts the attainable performance of
the closed loop. Figure 10 analyzes the effect of the
controller structure (i.e., full or decentralized) and
order (i.e., PI or PID) in the performance of the
closed loop. This result confirms our prediction that
increasing the controller order does not improve the
closed-loop performance for the quadruple-tank
system.
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Figure 9: Setpoint change and disturbance rejection
capacity for NMOP using full PI controller with
100 s (solid line), 50 s (dashdot line), and 10 s
(dashed line) rise time.
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Figure 10: Setpoint change and disturbance rejection
capacity for NMOP: full PI controller (solid line),
decentralized PI controller (dashdot line), and
decentralized PID controller (dashed line). All
controllers were designed for a 100 s rise time.

To simplify the comparison between the attainable
performances of the MOP and the NMOP, Figure 11
shows the simulation results obtained by the MOP
with a decentralized PI controller and  by the NMPO
with a full PI controller. Note that MOP can be more



than 10 times faster than NMOP.
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Figure 11: Setpoint change and disturbance rejection
capacity for MOP with decentralized PI controller
with 10 s rise time (solid line) and for NMOP with
full PI controller with 100 s rise time (dashed line).

6 COMPLEMENTARY EXAMPLE: AIR
SEPARATION PLANT

6.1 Process Description
Mainly due to the difficulties of separation oxygen
and argon by distillation, the production of pure
argon is divided into three steps. In the first step, the
O2 concentration is reduced over the height of the 1st

argon column from 90% to 2% O2. During the second
step the crude argon is warmed to ambient
temperature, the residual O2 is burned out by addition
of H2. The final step involves the separation of N2
residual in the 2nd argon column. The three steps are
schematically shown in Figure 12.

Figure 12: Air Separation Plant

As shown in Figure 12, the O2 concentration is
measured and controlled at three points. To control
the system, 6 possible variables can be manipulated:
u1 (feed of HPC),u2 (O2 vapor product), u3 (reflux
of LPC), u4 (air injection of LPC), u5 (argon
condenser rate), and u6 (reflux of HPC). To control
the system, we must chose 3 manipulated variables

among the six possible manipulated variables to
control the three O2 compositions. In the sequel, the
pairing (y1-uA, y2-uB, y3-uC) is denoted as
ST_ABC, e.g., ST_642 means the (y1-u6, y2-u4, y3-
u2) pairing. The three input variables not used for
feedback control purposes are treated formally as
disturbances. Perfect level and pressure controls are
assumed throughout this study. The linear model used
in this work was obtained by the identification of step
responses of the nonlinear model for perfect level and
pressure control.

6.2 RHP-zero, RGA, Minized Condition Number,
and RPN
In (Trierweiler and Engell, 2000), several control
structures (CS) were analyzed based on RHP-zero,
stationary and dynamic RGA, minimized condition
number, and RPN. Table 5 and 6 summarize those
results.

Table 5: RPN and RHP-zero(s)

CS RPN* RHP-zero

(A) ST_142 1.7  -

(B) ST_642 2.2 0.66

(C) ST_635 2.4 0.1081, 0.66

(D) ST_632 6.3 0.025, 0.027�0.13j, 0.66

(E) ST_132 6.7 0.0244, 0.025�0.12j
*The RPN was calculated considering a desired

performance of  3 min rise time and 10% overshoot.

Table 6: RGA (0)

CS RGA(0)

(A) ST_142
�
�
�

�
�
�0.8217 0.2235 -0.04517

1.659 2.431 -3.09
-1.48 -1.654 4.135

(B) ST_642
�
�
�

�
�
�1.121 -0.04905 -0.07149

1.125 3.446 -3.571
-1.246 -2.397 4.643

(C) ST_635
�
�
�

�
�
�1.044 -0.05657 0.01226

-0.1107 1.088 0.02263
0.06638 -0.03149 0.9651

(D) ST_632
�
�
�

�
�
�1.058 0.02032 -0.0788

-0.05055 7.146 -6.096
-0.007923 -6.166 7.174

(E) ST_132
�
�
�

�
�
�1.121 -0.1337 0.01253

-0.1076 7.283 -6.175
-0.0136 -6.149 7.162

Figure 13 shows the minimized condition number of
ST_142, ST_642, and ST_635. Note that the
directionality (i.e. �*(G(j�))) of ST_142 and ST_642
becomes similar to ST_635 in the middle and high
frequency range. In the low frequency range, ST_142
and ST_642 have high directionality. It is preferable
to use feedback in a region with low directionality,
since the input uncertainty can then be ignored and an



inverse-based controller can be applied successfully.
For the air separation plant, the possible closed loop
bandwidth is mainly limited by the RHP-zeros.
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Figure 13: Minimized condition numbers of the
control structures ST_142, ST_642, and ST_635

6.3 RPNRATIO, RPNDIFF, and RRPN
In Table 5, the RPN was calculated considering a
desired performance of  3 min rise time and 10%
overshoot. For this desired performance, the control
structures ST_142, ST_642, and ST_635 have the
best RPN values (i.e. the smallest RPN). Structures
such as ST_632 and ST_132 with large RPN values
can already be disregarded. But based only on RPN,
we cannot decide which one of the remaining control
structures is the best. For that decision, it is necessary
to analyze the RPNRATIO, RPNDiFF, and RRPN.

Table 7 shows the values of RPN, RPNRATIO,
RPNDIFF, and RRPN calculated for ST_142 using
several rise times and 10% overshoot. The
corresponding RPN, RPNLR and RPNMIN plots are
shown in Figure 14. Based on these results, it can be
concluded that for ST_142 the faster the closed loop,
the better the system performance. The closed-loop
response is only limited by saturation of manipulated
variables.

Table 7: RPN indices for ST_142

Rise
Time
[min]

RPN RPNRATIO RPNDIFF RRPN

3 1.74 1.36 6.02 0.36

20 1.89 1.75 12.35 0.75

60 2.86 2.19 19.40 1.19

Similarly to Table 7, Table 8 shows the values of
RPN, RPNRATIO, RPNDIFF, and RRPN calculated for
ST_635 using several rise times and 10% overshoot.
The corresponding RPN, RPNLR and RPNMIN plots
are shown in Figure 15. Based on these results, it can

be concluded that for ST_635 the faster the closed
loop, the more unrealizable the desired performance.
Here, the closed-loop performance is limited by the
RHP zero at 0.1081. Note that all the peaks of RPN
curves are at around a frequency equal to the RHP
zero, i.e., 	 
 0.1. If the peak of the desired
performance (i.e., peak of �

_
( [I-Td] Td )) is above this

frequency, the RPN curve shows a flat region up to
the peak of the desired performance.
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Figure 14: RPN plot (solid lines), RPNLR plot
(dashed lines), and RPNMIN plot (dashdot lines) for
ST_142 calculated using several rise times and 10%
overshoot.

Table 8: RPN indices for ST_635

Rise
Time
[min]

RPN RPNRATIO RPNDIFF RRPN

3 2.21 2.28 21.42 1.28

20 2.66 1.66 10.88 0.66

60 2.29 1.43 6.96 0.43
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Figure 15: RPN plot (solid lines), RPNLR plot
(dashed lines), and RPNMIN plot (dashdot lines) for
ST_635 calculated using several rise times and 10%
overshoot.



Low-order controllers will produce good
performance when the difference between RPNLR
and RPN plots is small. Based on Figure 14, we can
expect good results with low-order controllers for
ST_142 for desired performance with 60min and
3min rise time, but for 20 min rise time it is
recommended to increase the controller order. For
ST_635 the design of a low-order controller is very
difficult for the desired performance with 3 min rise
time, but when the rise time increases the controller
order can be reduced (cf. Figure 15).

Based on the RRPN analysis, we can conclude that
the best control structure for fast closed-loop
responses is ST_142 ( RRPN=0.36 for 3 min rise
time), whereas for slow closed-loop responses, the
control structure ST_635 will produce better
performance, since for 60 min rise time the
corresponding RRPN is smaller (RPPN=0.43 for
ST_635 and  RRPN=1.19 for  ST_142, cf. Table 7
and 8).

In (Trierweiler and Engell, 2000) and (Pegel and
Engell, 2001) are shown several closed-loop
simulations, which confirm the predictions made
here.

7 CONCLUSIONS
This paper demonstrated the application of the RPN
concept in the IO-controllability analysis of the
quadruple-tank system and of an air separation plant.
It is shown that the RHP transmission zero put
fundamental limitations on the performance of these
systems.  Because of its dependence on attainable
closed-loop performance, the RPN takes the effect of
nonminimum-phase behavior and the desired
performance of the closed loop into account. In
addition, the frequency-dependent directionality of
the system is quantified correctly. Based solely on
RPN, it is not possible to differentiate the effect of
the desired performance on the closed-loop response,
but using three new indices, RPNRATIO, RPNDIFF, and
RRPN, it is possible to see clearly how realizable a
given desired performance is. The relative RPN
(RRPN) seems to be the best index to compare how
far the desired performance is from the attainable
performance. RRPN values larger than one mean that
the desired performance is unrealizable, values
smaller than one means that desired becomes to be
possible. The RRPN value closer to zero, the easier
the controller design.

The analysis was performed using a linear nominal
model, but it can be extended to include
nonlinearities and uncertainties, as shown in
(Trierweiler, 1997) and (Trierweiler and Engell,
1997b). In a subsequent step, structures with small
RPN values can be analyzed further by the RPPN
criterion or by a nonlinear simulation with a linear
controller. RPPN (robust performance number of a
plant set) is an extension of RPN and it is influenced

by both the plant nonlinearities and the plant
uncertainties. For the quadruple-tank system, the
nonlinear analysis just confirms the conclusions and
results obtained with simple linearized models, but
for strong nonlinear systems, the nonlinear analysis
must be performed.  For the air separation plant, only
a linear model was available.

The RPN methodology is also applied to tune MPC
(Trierweiler, et al., 2001) and multivariable
controllers in general. All these methods are
implemented in the RPN Toolbox (Farina, 2000,
http://www.enq.ufrgs.br/rpn/).
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