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Abstract:  This paper develops a gain scheduled controller to move a diesel engine through
a driving profile represented as a set of 6 operating points in the state space of a 7th order
nonlinear state model.  The calculations for the control design are based on  a  3rd

order(reduced) model of the Diesel engine on which state space are projected the 6
operating points.  About each operating point, we generate a 3rd order nonlinear error
models of the Diesel engine.  Using the error model for each operating point, a linear
feedback control is computed as a solution to a set of LMIs.  The solution of each system of

LMIs produces a norm bounded controller guaranteeing that xi−1
d → xi

d  where xi
d is the i-

th desired operating point in the 3-dimensional state space.  The LMIs incorporate a term

which requires that xi−1
d  be in the region of attraction of xi

d.  The gain scheduled controller
performance is evaluated on the 7th order model.  Copyright © 2002 IFAC
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1. INTRODUCTION.

This paper develops a gain scheduled control law for
a diesel engine having a VGT/EGR(Variable
Geometry Turbocharger/Exhaust Gas Recirculation)
represented by a 7th order nonlinear state model.
(Guzzella and Amstutz, 1998)  The objective of the
controller is to drive the engine operating point from
an initial value to a desired value along a drive cycle
and stabilize the engine around the desired
equilibrium.  This equilibrium is computed so that it
satisfies driver needs while achieving a reasonable
trade-off between undesirable emissions of nitrogen
oxides (NOx) and smoke emissions on the one hand,
and fuel consumption on the other hand.  The control
design will be achieved using polytopic system
methods.  Here a chain of overlapping compact
regions of the state space is formed so that each
region contains an equilibrium point common to the
next polytopic region in the chain.  Given appropriate
continuity, the induced image of each region in the
model vector fields is bounded by a polytope.  Using
Lyapunov methods applied to each region, a
feedback control and an ellipsoidal domain of

attraction is obtained by solving a set of LMIs.  Each
controller will move the state through the associated
region to an operating point common to the domain of
attraction of current region and the next region along the
chain.  The controller for the next equilibrium state is
invoked when the system is sufficiently close to the
preceding equilibrium state.  This gain scheduled
controller represents the lowest type of hybrid control.

To preserve geometric understanding of the control
construction and to simplify the calculations associated
with the LMIs, the design algorithm builds on a 3rd order
nonlinear diesel engine model.  However, the control and
its performance is evaluated on the 7th order nonlinear
diesel engine model.

2. MODEL OF THE DIESEL ENGINE WITH
VGT/EGR.

For environmental and legislative reasons, emission
control of engines is critical.  Diesel engines offer
superior fuel economy but reducing their nitrogen oxide
(NOx) emission control remains challenging, because the
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conventional Three-Way Catalyst utilized in
gasoline-powered vehicles is inefficient for NOx

conversion at lean air-to-fuel ratios where diesels
typically operate.  To be competitive with gasoline
engines, new generation diesel engines are equipped
with exhaust gas recirculation (EGR) systems to
reduce NOx emission and variable geometry
turbochargers (VGT) to reduce transient smoke.
Combination of EGR and VGT provides an important
avenue for NOx emission reduction.  Traditionally,
turbocharging has been used to increase the power
density of diesel engines.  VGT is accomplished by a
turbine with adjustable guide vanes.  By adjusting the
guide vanes, the exhaust gas energy to the
turbocharger can be regulated, thus controlling the
compressor mass airflow and exhaust manifold
pressure.  Initially, the rationale for using the VGT
was to increase engine torque output at tip-ins and
reduce turbo-lag. Now, VGT has emerged as an
important way to reduce NOx emissions because it
can be used to increase the exhaust gas recirculation
rates.
The primary exhaust gas recirculation is
accomplished by an EGR valve that directs some of
the exhaust gas back into the intake manifold.  This
dilutes the cylinder charge and lowers the combustion
temperatures thereby impeding the process of NOx

formation.  Because the flow through the EGR valve
depends on the pressure drop across the valve, and
because the VGT can affect this pressure drop, the
turbocharger can also be utilized to increase the EGR
flow.  Thus, these two devices are strongly coupled
and the system exhibits internal instability, requiring
advanced control algorithms.  The controller has to
keep EGR flow rate and air-fuel ratio at the desired
levels such that NOx emission, as well as transient
smoke can be lowered to meet future regulations.
Additional factors that burden the application of
conventional control design methods are: lack of
information about the system states; only a limited
number of physical  coordinates (air flow rate and
intake manifold pressure) can be measured directly,
while knowledge of the variable “EGR flow rate” to
be controlled is not available; parameters of the
process (intake burnt gas fraction, intake charge flow
rate and exhaust pressure) are unknown, due to aging
and deposits on the flow ways/valves,  and  may vary
over a wide range for different operation modes;
system behavior is governed by a high order system
of nonlinear equations and as a result new control
strategies should be developed (traditional methods
based on PI or PID controllers are no longer
effective).

In light of this background, the model of the
VGT/EGR Diesel engine (Utkin et al., 2000;
Kolmanovsky et al.,1999a; Kolmanovsky et al.,
1999b) is obtained through the application of  the
mass and energy balances for the intake and exhaust
manifolds. For control design we will use a
simplified 3rd order model (developed by
differentiating the universal gas law assuming locally

constant manifold temperatures) whereas the 7th order
model will serve to evaluate and fine tune the control
design.

2.1 The 7th order model for the diesel engine.

The definitions of the state variables used in the
nonlinear state model below are:  (i)  ρ1, ρ2 (gas density

in intake (subscript 1) and exhaust (subscript 2)
manifold), (ii) F1, F2 (burnt gas fractions in intake and
exhaust manifolds), (iii) p1, p2 (pressures in intake and
exhaust manifolds), and (iv) PC (compressor power).  For
convenience we define the state vector

x(t) = [ 1(t),F1(t ),p1(t), 2(t),F2(t ),p2 (t),PC (t)]T . In
general, the indices 1, 2, e, and C stand for intake
manifold, exhaust manifold, engine and compressor
respectively.  The symbols Wij and uij have the meaning
of flows from index i to index j where i, j ∈ {1, 2, e, C}.

Ti has the meaning of temperature in "compartment" i,
whereas Tij means the temperature of the mixture
flowing from i to j.  The intake manifold equations are:

˙ 1 = WC + u21( ) −W1e − u12 ( )[ ] V1

˙ F 1 = (F2 − F1)u21( ) − F1WC[ ] 1V1             (2.1)

˙ p 1 =
R

V1
WCTC + u21( )T21 −W1eT1 − u12( )T1[ ]

The exhaust manifold equations:

˙ 
2 =

We 2 − u2t ( ) − u21 ( ) + u12 ( )( )
V2

˙ F 2 =
(Fe 2 − F2 )We2 (Wf ) + (F1 − F2 )u12 ( )

2V
         (2.2)

˙ p 2 = R
We 2 (Wf )Te2 − u 2t ( )T2 − u21 ( )T2 + u12 ( )T1

V2

The power transfer from the turbine to the compressor
equation:

˙ P C = (−PC + m Pt) (2.3)

The parameters that appear in this model above have the
following meanings:  (i) γ is the specific heat ratio, (ii) R

is the difference of specific heats, (iii) τ is turbine to

compressor power transfer time constant, (iv) ke  is the

pumping rate, (v) ηm is the turbocharger mechanical

efficiency, (vi) V1, V2 are the volumes of the intake and
exhaust manifolds respectively. Equation (2.3) above
represents the approximation of the turbocharger delay in
the transfer of energy to the compressor. The controlled
inputs to the model are α and β which represent the valve

position of the EGR, Wegr = Wegr(α), and VGT

respectively. Both α and β have values in the interval

[0,1] with 1 meaning fully opened.  Note that Wf is fuel
flow and We2(Wf) means that the flow from the engine to
the exhaust manifold depends on fueling rate Wf.  WC

(the flow from the compressor to the intake manifold)
and W 1e depend on the state of the system.  Finally, we
set u12(α) = 0, i.e., the EGR  flow from the intake



manifold to the exhaust manifold is set to zero,
although there are circumstances when this is not the
case.  When implementing the control we use Wegr

and u2t rather than α and β.

2.2 Reduced order model

A reduced (3rd order) model of the diesel engine
follows by differentiating the ideal gas law for the
intake and exhaust manifolds under the assumptions
that the temperatures in the intake and exhaust
manifolds are constant for local operation and that
the there is no dependence of thermodynamic
properties on composition (i.e. all thermodynamic
properties are referenced to air = a  and R = Ra  ).
Set points for this model are projections of those of
the 7th order model.  From (Utkin et al., 2000) the 3rd

order reduced model can be written as:

˙ p 1 = k1
C

TaC p

PC

p1
pa

 
  

 
  − 1

 

 
  

 

 
  

− k1ke p1 + k1Wegr

˙ p 2 = k2 ke p1 + W f
d −Wegr − u2t( )                (2.4)

˙ P C = −
1

PC − m tT2C p 1−
pa
p2

 
  

 
  

 

 
  

 

 
  u2 t

 

 

 
 

 

 

 
 

2.3 Operating Points

Generating the set of operating points for the 7th order
system is done by specifying a specific air-to-fuel
ratio, EGR, and the fueling rate for a given engine
speed and load.  These (input) quantities are then
mapped (Utkin et al., 2000; Upadhyay, 2001) into
desired (equivalent input) values of the flow rates,

i.e., the fueling rate, WC
d and Wegr

d .  From these

"inputs" we determine consistent equilibrium states in
the 7th order model which are then projected onto the
3rd order model state space assuming locally constant
T1 and T2 for each operating point.

3.  A POLYTOPIC/LYAPUNOV/LMI METHOD
FOR STABILIZING NONLINEAR SYSTEMS

Several notions from Lyapunov stability theory
(Khalil, 1996) are pertinent.  To state the results more
simply, we consider the usual nonlinear state model

˙ x (t) = f (t, x(t)), x(t 0) = x0 (3.1)

where x(t) ∈Rn  and t ∈R  and assume that the
origin is a equilibrium point, i.e. f (t,0) = 0  for all t.
The origin is uniformly exponentially stable with rate
of convergence α > 0 if there exists R > 0 and β > 0

such that whenever x(t 0) < R , x(t ) <

x(t 0) e− (t− t0 )  for all t ≥ t0.  Assuming the

origin is an exponentially stable equilibrium point for

3.1, the set Ω  is a region of attraction for the origin if
x(t0) ∈ Ω ⇒ lim

t→ ∞
x (t) = 0 .  Finally, a subset Λ  of the

state space Rn is called an invariant set for 3.1 if
x(t0) ∈Λ ⇒ x (t) ∈Λ  for all t ≥ t0.  Thus:
Theorem 1. [Lyapunov]  With respect to the system 3.1
suppose that there is a continuously differentiable
function V  and positive scalars α, β1, β2, and c such that

for all x in Ω = {x ∈Rn :V(x) < c} , 1 x
2 ≤ V(x) ≤

2 x
2 and DV (x) f (t, x) ≤ −2 V (x)  for all t .  Then

the origin is a uniformly exponentially stable equilibrium
point with invariant region of attraction Ω and rate of

convergence α.  The main theoretical result of this paper

states sufficient conditions for the origin to be uniformly
exponentially stable for a system having the following
polytopic form:

˙ x (t) = A(t , x) x(t ) + B(t, x)u (t), x(t 0) = x0 (3.2)
A(t, x) = A0 + Ψ (t, x)∆A , B(t, x) = B0 + Ψ (t, x)∆B

for constant A0 , B0, ∆A , and ∆B .  The scalar valued
function Ψ(t, x)  has the property that whenever
Cx ≤ , for a matrix C  and a positive scalar , then

 a( ) ≤ a Cx( ) ≤ Ψ (t , x) ≤ b Cx( ) ≤ b( ) (3.3)

where  a(o)  and   b(o)  are non-increasing function  and
non-decreasing functions respectively.

Theorem 2 (Corless, 2001).  With respect to the system
3.2 with property 3.3, suppose there exists a matrix L
and a positive definite matrix S such that

A1S + B1L + SA1
T + LT B1

T < 0 (3.4a)

A2S + B2L + SA2
T + LT B2

T < 0 (3.4b)

CSCT ≤ 1 (3.4c)

where A1 = A0 + a( )∆A , A2 = A0 + b( )∆A ,
B1 = B0 + a( )∆B , and B2 = B0 + b( )∆B .  Then for
the closed loop system, system 3.2 with the linear state

feedback u = Kx = LS−1x , the origin is a uniformly
exponentially stable equilibrium point with Ω =

{x ∈Rn | xTS−1x < 2}  an invariant region of
attraction.

The previous result can be generalized to systems
described by 3.2 so that the  origin is an exponentially
stable equilibrium when the time/state dependent
matrices A(t, x)  and B(t, x)  have the following more

general structure: A(t, x) = A0 + Ψi(t, x)∆Ai
i=1

l

∑  and

B(t, x) = B0 + Ψi(t, x)∆Bi
i=1

l

∑  where the   Ψi (o,o)  are

scalar valued functions of t  and x ,   A0 , ∆A1 , K , ∆Al are
constant n × n matrices and   B0 , ∆B1,K, ∆Bl  are n × m

matrices.  This requires that, whenever Cix ≤ ,



ai( ) ≤ Ψi(t, x) ≤ bi( )  for constant matrices Ci , a
positive scalar , and nonincreasing and
nondecreasing ai (.) and bi(.),   i = 1K l .  The region

of attraction is Ω = {x ∈Rn :xTS−1x < 2} , the
matrices L  and S and the scalar  must satisfy

AS + BL + SAT + LTBT < 0

CSCT ≤ 1
(3.5a)

for all C ∈{Ci} and all matrix pairs

A,B( ) ∈ A0 + Ψi∆A i

i=1

l

∑ ,B0 + Ψi∆Bi

i=1

l

∑ 
  

 
  ,Ψi =

a i( )

bi ( )

 
 
 

 
 
 
 

  
 
 
 

  
(3.5b)

for  i  = 1,...,l.  This more general formulation of
Theorem 2, represented as a family of LMIs by the
relations of 3.5, will be used to derive a linear state
feedback for the reduced order model of the Diesel
engine.  The existence of L, S, and µ in the LMI 3.5

provides state feedback that is sufficient for stability.
We must further impose two more constraints on the
variables S and L  for a practical solution to our
control problem. The first constraint permits
inclusion of a starting point xo  in the invariant
ellipsoid Ω  centered at the origin which  can be
expressed as an LMI using the  Schur  complement:

xo − x1
d( )T

S−1 xo − x1
d( ) < 2 ⇔

2 xo − x1
d( )T

xo − x1
d( ) S

 

 

 
 
 

 

 

 
 
 

> 0 (3.6)

where xo − x1
d( )  is  to be driven to zero.  A second

constraint (Boyd et al., 1994) upper bounds the norm
of u t( )  by . For x t( ) ∈Ω , we require that for all t

u (t )
2 = Kx(t)

2 = xT (t)KT Kx(t) ≤ 2 (3.7)

But if

KT K ≤ 2 2( )S−1 (3.8)

holds, then u t( )
2 ≤  as desired.  To convert 3.8 to

LMI form, observe that

KT K = S−1LTLS −1 ≤
2

2 S−1 ⇔ LTL ≤
2

2 S  (3.9)

Using the Schur complement 3.18 can be written as
the LMI:

S LT

L 2 2

 

 
 
 

 

 
 
 

≥ 0 (3.10)

In summary, the LMI system formed by inequalities
3.5, 3.6 and 3.10 will be used in the next section to
develop a gain scheduled controller for the error
system set forth in the next section.

4. CONTROL DESIGN

This section details the application of the general version
of Theorem 2 to the design of a control law for the
reduced order model of the Diesel engine.  The controller
drives the system state through a sequence of operating
points.  For each operating point we generate a nonlinear
error system amenable to polytopic form.  For each such
system, a system of LMIs is formulated so that the
previous equilibrium is included in the region of
attraction of the current error system.  The solution of
each system of LMIs generates the needed control.

4.1 Derivation of the error system

The reduced order model of the EGR-VGT Diesel engine
(Upadhyay, 2001) is given in the set of equations 2.4.
Assuming that the desired operating point is

p1
d , p2

d ,PC
d[ ]T (see section 2.3), the equilibrium

equations are obtained by setting the derivative in
equation 2.4 to zero and solving, i.e.,

0 = C

TaC p

PC
d

p1
d

pa

 

 
 

 

 
 −1

 

 
 
 

 

 
 
 

− ke p1
d + Wegr

0 = ke p1
d + W f

d − Wegr
d − u2t

d

0 = PC
d − m tT2C p 1 − pa

p2
d

 

 
 

 

 
 

 

 
 
 

 

 
 
 
u2 t

d

 (4.1)

where the superscript d  has the meaning of the desired
operating point.  Since the control inputs for the model
(2.4) are Wegr  and u2t  we denote them by u1 and u2 ,

respectively.  Define the error relative to the desired

operating point as ∆x  = [∆p1 ,∆p2 , ∆PC ]T  = [p1 − p1
d ,

p2 − p2
d, PC − PC

d]  and from equations 2.4 and 4.1 we
can obtain a polytopic form of the error system as:

∆x
•

= A ∆x( )∆x + B ∆x( )∆u  (4.2)
where

A ∆x( ) = A0 + Ψi ∆x( )∆Ai
i=1

4

∑ (4.3)

B ∆x( ) = B0 + Ψi ∆x( )∆Bi
i=1

4

∑  (4.4)

The associated functions in 4.3 and 4.4  are:

Ψ1 ∆x( ) =
k1 C PC

d

TaC p ∆p1

1

p1
d + ∆p1

p a

 

 
 

 

 
 − 1

−
1

p1
d

pa

 

 
 

 

 
 − 1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

,



Ψ2 ∆x( ) = C

TaC p

1

p1
d + ∆p1

pa

 

 
 

 

 
 −1

Ψ3 ∆x( ) = −
1 m tT2C p u2

d

∆p 2

pa

p 2
d + ∆p2

 

  
 

  −
pa

p2
d

 

  
 

  
 

 
 
 

 

 
 
 ,

Ψ4 ∆x( ) = −
1

m tT2C p
pa

p2
d + ∆p2

 

 
 

 

 
 

with ∆A4 = 0[ ] ,

A0 =
−ke 0 0

k2ke 0 0

0 0 −
1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

, ∆A1 =
1 0 0

0 0 0

0 0 0

 

 

 
 
 

 

 

 
 
 

, ,

∆A2 =
0 0 1

0 0 0

0 0 0

 

 

 
 
 

 

 

 
 
 

∆A3 =
0 0 0

0 0 0

0 1 0

 

 

 
 
 

 

 

 
 
 

.

and with ∆B1 = ∆B2 = ∆B3 = 0[ ] ,

B0 =
k1

−k2

0

0

−k2
1

m tT2C p

 

 

 
 
 
 
 

 

 

 
 
 
 
 

,  and ∆B4 =
0 0

0 0

0 1

 

 

 
 
 

 

 

 
 
 

.

The above defines the polytopic form of the reduced
order model of the Diesel engine.  Observe that there
exist functions   Φ i(o), i = 1,2,3,4 such that
Ψi (∆x) = Φi(Ci∆x), i = 1,2,3,4 where

C1 = C 2 = 1 0 0[ ]  and C3 = C4 = 0 1 0[ ] .

Since in a sufficiently small region about the origin
the functions   Φ i(o), i = 1,2,3,4 are monotone then,
for a suitably chosen small > 0, the functions
Φ i(Ci∆x)  can be included in the interval defined by

Φ i −( )  and Φ i( )  whenever Ci∆x ≤ .  It follows

that the constants ai  = ai (µ) and bi = bi(µ) can now

be explicitly chosen such that ai ≤ Ψi (∆x) ≤ bi

whenever Ci∆x ≤  for i = 1,2,3,4.  Thus the LMIs

formed by the above inequalities is now completely
specified and the gain K  of the linear state feedback
controller u = K × ∆x  is then obtained as a function
of the solution of this system of LMIs.

5.  GAIN SCHEDULED CONTROL LAW

In a typical drive cycle, the diesel engine transitions
through different reference states determined by the
ECM according to driver demands, road conditions,
and appropriate VGT and EGR associated with pre-
computed (mapped) exhaust gas emissions
constraints.  Associated with each reference state

xi
d ∈D  is the triple (Li, Si ,Ωi) ,   i = 1,K, nD , where

D is the (finite) set of all reference states which may
occur during the operation of the engine and nD is the
number of elements in D.  Assuming that the engine

is in state xk
d and the next desired state is xk +1

d  the

following situation may occur: xk
d ∉Ω k+1.  Here the

engine cannot be driven from xk
d to xk +1

d  using the

control law uk = Lk Sk
−1x .  It is necessary to compute

additional intermediate reference states xk
1 , xk

2 ,..., xk
ik  so

that the engine state passes through the whole chain of

regions of attractions Ωk
1 ,Ωk

2 ,...,Ωk
ik  until it reaches

Ωk +1.  By applying the control uk = Lk Sk
−1x  at the

appropriate point, the engine will then be driven

asymptotically to xk +1
d  and it will remain there as long

as the reference state remains unchanged.

The above techniques were applied to the 3rd order
engine model using a total of 6 equilibrium states
including the initial and final points.  The resulting
control was then applied to the 7th order model and
simulated for evaluation as shown in figure 2.  The
results here are similar to those reported in
(Stefanopoulou et al. , 1998) although this work does not
illustrate a return to a lower load.  An advantage here is
that we utilize the nonlinear error model similar to (Utkin
et al., 2000) although in (Utkin et al., 2000) a robust
variable structure control was implemented in contrast to
the polytopic/LMI development here.

In implanting the control, a relative error

x − xi−1
d

xi−1
d

< error

of 0.5 was used for switching to the next controller.  The
relative error significantly impacts the time of
convergence.  A relative error of 10-3 took upwards of 70
seconds.  Further reduction of convergence time is
possible by allowing a larger norm on the control.  It is
necessary to explore these tradeoffs relative to fuel
economy and emissions between the intermediate
equilibrium states.

7.   CONCLUSIONS.

This paper has provided an algorithm for designing a set
of linear gain scheduled feedback controllers that will
drive a the state from an initial operating point to a
desired one.  The controls are obtained via the solution of
a family of LMI's developed from a polytopic form of
the 3rd order error model of the engine.  The polytopic
form is not unique although in this case we felt the given
equations were natural.  Investigation of other forms  is a
possible area of future research.

Besides robustness, flexibility in the controller design
permeates our approach.  Flexibility means that around
an equilibrium point several regions of attractions that
include the same starting point can exist simultaneously.
If the origin is the equilibrium point (as in the error
model) this is equivalent to saying that there exist
positive definite matrices Si, i = 1:N , such that the sets



Ωi = x:xTSi
−1x < 1{ } , i = 1:N , are invariant regions

of attractions for the closed loop system, that contain
the same starting point.  A controller Ki corresponds
to each region of attraction Ωi which in the error
model is the origin.  Hence, for the same equilibrium
point there often exist several controllers with
different regions of attraction (which contain the
same starting point), providing us with flexibility in
selecting a controller that has a better performance in
terms of a trade-off of the response speed, variations
of the transient response, variations of the control
input, etc.  This trade-off has been taken into account
for determining a sequence of controllers that drive
the 7th order model Diesel engine from a low load
operating point to a medium load operating point.

The controller performance on the 7th  order model
was reasonable, although EPA standards necessitate a
more stringent trajectory following.  The ideas in
(Landau, 2001) would appear to provide an avenue
for the improved controller design.  The idea is to
simulate the 7th order nonlinear model with control
and using the results, implement a parameter ID on
the closed loop 3rd order model to have its
performance better approximate the closed loop
performance of the 7th order model. Because the 3rd

order model is not a singular perturbation of the 7th,
such an approach would seem warranted.
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Figure 2.  (a) Plot of the pertinent state trajectorie from
7th order model simujlaiton. (b) Control inputs: with units
in grams per second.


