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Abstract: In the paper an application of fuzzy neural networks (FNN) for sensor fault 
diagnosis in condensation turbine control unit was given. The FNN are applied for fault 
detection and isolation processes. This approach gives the homogenous solution of fault 
detection and isolation process (FDI). The FNN models of  turbine power, live steam 
pressure and steam mass flow rate were created and verified. Satisfactory models’ 
performance indexes were obtained. The  fault sensitivity of residuals  was investigated 
and approved. Copyright  2002 IFAC. 
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1. INTRODUCTION 
 
High reliability of contemporary condensation 
turbines have been achieved due to applying of 
hardware redundancy. In the recent years the 
intensive research works were done in the field of 
application of analytical redundancy for diagnostics 
and system reconfiguration.  The theory of fault 
tolerant systems have been strongly developed  
nowadays. The survey papers from this field were 
published by Patton (1997) and Blanke et al. (2000). 
A lot of contributions were devoted to the 
applications of fault tolerant systems (Yang and Lu, 
1991; Kościelny and Wasiewicz, 1993, 1996; Won-
Kee Son et al. 1997; Candau et al. 1997). On  Fig.1 
the general idea of application of fuzzy neural 
networks for instrumentation fault diagnosis was 
presented (Syfert and Kościelny 2001). There are to 
distinguish two main steps of fault diagnosis 

procedures: fault detection and fault isolation. For 
performing fault detection tasks,  the fuzzy neural 
partial models (FNN-PM) are used. FNN-PM are 
models of  subsections of decomposed system. Those 
models are representing the behaviour of the system 
in fault free states. Then the residuum vector r is 
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obtained by comparing the process variables and 
model outputs. The residual values should be equal to 
0 in fault free states. By further processing of the 
residuals applying FNN the diagnostics decision is to 
be obtained. This decision may be expressed as a set 
of  k pairs  of certainty degrees δk  assigned to k-th 
fault fk {<δk,  fk>}. 

 
 

2. CONDENSED TURBINE CONTROL UNIT 
 

Condensation turbine is controlled by throttling the 
live steam mass flow using a set of turbine control 
valves. The set points for actuators acting on control 
valves are generated by turbine main controller. The 
controller input signals are used also for performing 
turbine protection tasks (Pawlak, 2002). The 
simplified block diagram of the turbine 
instrumentation is given in Fig. 2. The main turbine 
controller output signal YH is feed to electro- 
hydraulic transducer  (pi/I) thus setting the  
 
 

 
 
 
Fig.2.  The simplified diagram of instrumentation of 

condensation turbine.  Notations: Z – set of 
control valves; S – set of actuators; T – power 
turbine; K – condenser; G – generator;  SE – 
electric power system; F- live steam mass flow 
rate; pT – steam pressure; pi – hydraulic oil 
pressure; f – electrical power system frequency; 
G – power generator; n –turbine rotational 
speed; Y0,Y1 –  external control set point 
signals; ARCM – frequency and power control 
system; WG – generator on-off switch; SST – 
turbine efficiency binary signal from turbine 
diagnostic module; Yi – binary signal of power 
demand from ARCM; YH – controller output;  
YPZ – auxiliary controller output  for boiler 
control unit. 

positioners A driving the set of control valves Z.  The 
outputs of the control system are: turbine power P 
and rotational turbine speed n. This signals are feed 
back for main controller. The turbine is operated in 
two modes. First mode is switched on when turbine is  
not synchronised with the electrical power system. 
Just before pulling turbine into step the controller is 
switched into turbine rotational speed controlling 
mode. In the second  control mode  (just after pulling 
turbine into step) the power signal replaces rotational 
speed in control system  feedback. The set point for 
power control system is feed to controller  (Y0, Y1) 
from the national power  load-dispatching agency.  
Live steam pressure and live steam pressure signals 
are also feed  into control unit. Most of the signals 
are analogue. The list of input signals of 
condensation turbine is presented in table 1.  

 
 

3. FAULT DETECTION 
 

Significant advantage of fuzzy neural models (FNN) 
is the ability of modelling the non-linear processes.  
Huge real process data files are nowadays available  
from the DCS control systems commonly applied in 
industrial automation.  This gives the opportunity of 
modelling processes based on real process data and 
process knowledge. The process knowledge is used 
for defining the qualitative models rather than 
quantitative.  FNN models may be tuned on the basis 
of real data using various learning techniques.  Rapid 
development of  computer technology has been  
broken the essential barrier concerning with 
reasonable computational power demands for this 
purposes. For modelling of MISO fuzzy systems 
(Bossley, 1997; Fuller, 1995; Horikawa et al., 1991; 
Zhang, et al., 1996) defined the set of i following 
rules:  
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jK  is the number of fuzzy sets assigned for j-th 
input. 

 
 



 

 
 

 
Tab.1. Set of input signals and fault detection methods applied for condensation power turbine 

 
Item Signal Symbol Unit Fault detection method 

1 Turbo set power P MW Fuzzy neural networks 
2 Live steam pressure pT MPa Fuzzy neural networks 
3 Live steam mass flow rate F t/h Fuzzy neural networks 
4 Rotational speed of turbine n min-1 Hardware redundancy (voting 2 from 3) 
5 Electric system frequency f Hz Test of correlation with turbine rotational speed  

Threshold technique 
6 Power set-point signal Y0 MW Threshold technique 
7 Power velocity set-point signal Y1 MW Threshold technique  

 

The gaussian functions are used for fuzzyfication of 
crisp inputs. Thus the membership functions of the xj 
input  have a form : 
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The parameters (weights) wc  and  wg are used for 
defining the partitioning rules of the space of 
discourse. wg is used for setting the function wideness 
when wc parameter is an offset in the space of 
discourse xj. 

From (1) the normalised fire level of the i-th rule is 
given by: 
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For detection of instrument faults the following set of 
models may be considered:  
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Basing on the models (5), (6) and (7)  the following 
residuals are generated: 
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Data acquired from the real plant were used for 
model tuning. Separate data sets were used for model 
learning and validation. The quality of modelling was 

estimated using performance index J (Kościelny et al. 
2000) 
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where: 

N – learning data set samples count 

y^
i – model output, 

yi – measurement. 

The results of modelling turbine’s power are given on 
Fig.3. The model quality performance index is 
sufficiently good (J=0.28). Similar values of 
performance indexes were obtained also for models 
described by equations (6) and (7). The investigation 
of the residuals sensitivity in faulty states was also 
done.  
 
The instrumentation faults are generally classified 
into two main classes: abrupt and incipient  
(parametric) faults. Abrupt and incipient faults cause  
the residuum excursion. In the case of abrupt faults 
the extraordinary measures must be immediately 
undertaken to ensure process safety. 
 

 
Fig.3. An example of the modelling the turbine 

power. Notations: F – live steam mass flow 
rate, P – measured power , P̂ - power model 
output, r1 – power residuum 

 



 

 
 

Fig. 4. Flow sensor fault simulation . 
Notations: P – measured power , P̂ - power 
model output, F – measured flow rate, F̂ -  
flow rate  model output, r1 – flow rate 
residuum 

The incipient faults are slowly developing faults 
resulting from system degradation. Monitoring of this 
faults may help when prediction of the system 
lifetime is important. 
 
On Fig. 4. the model output and residuum are shown 
in the case of power transducer fault. On Fig.5. the 
system behaviour is to be observed in the case of live  
steam mass flow transducer  fault.  The faults were 
injected artificially into the real data stream by 
applying  tracking and holding technique. 
 
On Fig. 6 the model (7) and residuals in the case of 
steam pressure sensor fault are shown. The residual 
sensitivity to the faults is clearly visible on the graphs 
shown in Fig. 4, 5, 6. Some additional residual 
processing (filtering) is to be applied to reject high 
frequency components of the residual signal 
spectrum. The time-window moving averaging filters 
may be applied for instance.  
 

 
Fig. 5. Power sensor fault simulation. Notations are 

the same as on Fig. 4. 

 
Fig. 6. a)  Steam  pressure sensor fault simulation 

(pressure drop from 12.8  to 12.6 MPa). pT 
– measured pressure , Tp̂ - pressure  model 
output,  

b) Turbine controller output fault simulation 
YH – measured controller output, HŶ -   
model output, r3 – controller output 
residuum 

 
 

4. FAULT ISOLATION 
 

Fuzzy neural network was applied also for sensor 
fault isolation of power, steam pressure and steam 
mass flow rate. Application of fuzzy logic for 
residuum evaluation and fault isolation make an 
advantage by delivering the fault uncertainty degrees 
(Kościelny, 1999). This gives more precise 
description of diagnostic state. 
 
A FNN, unlike artificial neural networks, is not a 
“black box”. The expert knowledge may be 
“injected”  directly in the form of network weights 
values.  

Fault isolation procedures of: power, steam pressure 
and steam mass flow rate sensor  faults are based on a 
set of five following rules: 

 

  



 

 
 

freefaultTHENrandrandrIF 000 321 ===  (12a)

PfaultTHENrandrandrIF 011 321 === (12b
)

mfaultTHENrandrandrIF 010 321 === (12c)

TpfaultTHENrandrandrIF 101 321 === (12d
)

stateunknownotherwise  (12e)

where:  

0 – “near zero” absolute residual value (fuzzy term) 

1 – ”non zero” absolute residual value (fuzzy term) 

The residuum evaluation technique is shown on 
Fig.7.  
 
Fuzzy neural network used for fault isolation is given 
on Fig. 8. Three first layers are responsible for fuzzy 
evaluation of residuals. In the fourth layer the firing 
level for every rule is obtained and appropriate faults 
certainty degrees are calculated. The neural networks 
may be trained in two ways. First approach is based 
on the network training using the process data from 
fault free system operation. Afterwards the networks 
are trained also for faulty states. Fault free data are 
easy available in opposite  
 

 
Fig. 7. Fuzzy evaluation  of j-th normalised absolute 

value of fault residual rnj. Notations: µ1(rj) – 
fuzzy set ”non zero”; µ0(rj)  – fuzzy set ”near 
zero”; 
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Fig. 8. The structure of FNN applied for fault 
isolation 

to the data from faulty states what makes troubles in 
industrial applications. In the case of sensor faults the 
data might be relatively simple simulated in similar 
way as for residual sensitivity investigation. The 
unknown fault state data may be also generated 
artificially using similar procedures. 
 
Second approach is based on the set of rules (12a-e). 
The network is not trained in the early begin at all.  
Fuzzy partitioning may be done arbitrary. The 
network weights wf however are related to (12a-e). If 
the combination of residual input values is present in 
the rule premise the value of wf =1, otherwise wf =0. 
In the case of wf =0, the network is switched in the 
inference mode basing exclusively on the rules given 
by an expert. 
 
Example of fault isolation 
 
Let µ0(rj) denotes residuum membership function 
values of the “near to zero” set and µ1(rj) denotes 
membership function values  of  the “non  zero” set.  
Thus: 
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Following residuum fuzzy evaluation results were 
achieved in time ti  
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Applying PROD operator for fuzzy reasoning the 
following firing levels are calculated  
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The set of firing levels given in (15) is generated by 
on the net at time ti. The firing levels are interpreted 
as a fault certainty degrees. Diagnosis that will be 
feed forward have to be appropriately tuned applying 
e.g firing level threshold technique. In the example 
the diagnosis point out relative certain fault of turbine 
power measurement chain.  
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5. SUMMARY 

The diagnosis of instrumentation with application of 
FNN for condensation turbine were presented. Fuzzy 
neural models are useful for fault detection. For the 
fault detection the bank of fuzzy neural partial 
models (FNN-PM) was used. A significant advantage 
of fuzzy and neural methods is ability of modelling of 
non-linear processes and generalisation features. 
Models of processes being fully efficient are obtained 
on the basis of experimental data, with the application 
of various learning methods. It must be taken into 
consideration, that generalisation features of FNN 
models are strictly limited to the space determined by 
the signal spans used for the model learning. 
 
Fuzzy neural networks approach applied for fault 
isolation allows fault isolation combined with 
delivering some additional information interpreted as 
fault certainty degrees. This take advantage over FI 
methods basing on classical crisp logic. 
 
Fuzzy neural networks approach. is more robust to 
false symptom values comparing to FDI methods 
basing on threshold methods of residual evaluation. 
This significantly reduces number of false diagnosis. 
 
When taking into consideration industrial 
applicability, the three extremely important features 
of presented above FDI methods based on FNN must 
be underlined: 

•  FDI methods does not need any process data 
from faulty states. For sensor faults the data 
may be easily simulated. 

•  fault inference rules for FNN structures may 
be based on expert knowledge 

•  fuzzy reasoning allows to obtain fault 
uncertainty degrees. 

The approved FDI system based on FNN may be 
applied as software redundancy support in fault 
tolerant systems. 
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