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Abstract: Recent anatomical studies of extraocular muscles (EOM) demonstrate the stability
of muscle paths. This is due to the fact that each rectus EOM passes through a pulley
consisting of an encircling ring or sleeve of collagen. In this paper, the EOMs are modeled
using the Hill type musculotendon complex and the effect of extraocular pulleys are studied.
The model proposed by Martin and Schovanec in 1999, for horizontal eye movement has
been used as a basic starting point. The extraocular pulleys are then introduced and analyzed
mainly to study how Listing’s law is enforced and how it implements an oculomotor plant

which appears commutative to the brain.
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1. INTRODUCTION

Modeling the eye plant in order to generate various
eye movements, has been the topic among neurolo-
gists, physiologists, and engineers for a long time. The
eyes rotate with three degrees of freedom, i.e., hori-
zontal, vertical and torsional. Addressing the question
of modeling the eye plant to mimic the realistic eye
movements involves a three dimensional approach.
Previous studies which used modeling as a means of
understanding the control of three-dimensional eye
movement have adopted two main approaches. One
focusing on the details of the properties of the EOMs
(Martin and Schovanec, 1998; Miller and Robinson,
1984) and the other focusing on control mechanisms
for three-dimensional eye movement using over sim-
plified linear models with all the details of the above
EOM properties ignored (Raphan, 1998; Quaia and
Optican, 1998).

About a decade ago Miller (Miller, 1989) noticed the
stability of rectus EOM belly paths during eye move-
ments. This provided strong evidence for EOM path
constraint by pulleys. Each rectus EOM seemed to

pass through a pulley consisting of an encircling ring
or sleeve of collagen, located near the globe equator.
Implications to ocular kinematics due to pulleys are
discussed in this paper using the detailed ocular model
first proposed by Martin and Schovanec (Martin and
Schovanec, 1999) for horizontal saccadic eye move-
ments.

If the eye is moved from one fixation to another, in
theory, there are unlimited ways to orient the axis
about which the eye rotates in 3-D space. But in
reality, eye is constrained in its torsional freedom. This
was first stated by Donders (1847), i.e., for steady
fixation with the head upright, the actual positions
of the eye are restricted in such a way that there is
only one eye position for every gaze direction. This
restricts the three-dimensional space of all possible
orientations to a two-dimensional subspace. Listing
and Helmholtz further investigated and determined to
which two-dimensional subspace the eye is restricted.
Listing’s law, a specific case of more general Donders’
law, states that any physiologic eye orientation can
be reached from a particular eye position known as
the primary position, by rotation around a single axis,



and that all such possible axes lie in a single plane
known as Listing’s plane. Unless the trajectory follows
a radial line passing through the primary position,
the rotation axis used to move the eye from one
position to another, obeying Listing’s law, tilts out of
Listing’s plane. Experiments done on normal human
subjects and rhesus monkeys (Tweed and Villis, 1990;
Haslwanter et al., 1991) confirm this notion, i.e., if a
trajectory is orthogonal to the radial line, the ocular
rotation axis tilts out of Listing’s plane by exactly half
the angle of the eye’s eccentricity for saccadic and
smooth-pursuit eye movements. This is known as the
“half-angle rule”. Similar geometrical fact is observed
for the vestibulo-ocular reflex (VOR) (Misslisch et
al., 1994). However the tilt angle here is only a quarter
of the eye’s eccentricity, hence “quarter-angle rule".

When pulleys were not known, Listing’s law was pre-
sumed to be enforced by a neural circuitry issuing
complex commands to the EOMs (Tweed et al., 1992).
But experiments have failed to identify such a neural
substrate for Listing’s law. It is also clear that the
torsional component is generated somewhere down-
stream from the superior colliculus since the later
encodes saccades as two dimensional (horizontal and
vertical) rate of change of eye orientation. However,
during VOR and sleep the Listing’s law is violated
implying that there is some kind of a neural basis.

The muscle path stability due to pulleys introduces
a new mechanical basis on enforcing Listing’s law.
Figure 1 shows the arrangement of horizontal rectus
EOMs. The rotational axis is always perpendicular to
the plane containing the lines connecting pulleys with
the scleral insertion. Therefore the rotational axis for
straight ahead gaze in A, is vertical, i.e. perpendicular
to the horizontal plane Pg. In B, the fixation is at
a horizontally centered target at an elevation ¢. The
tilt of the rotational axis becomes ¢/2 and is perpen-
dicular to the plane containing the lines connecting
pulleys with the scleral insertion and the center to the
scleral insertion. This ‘half-angle plane’ is shown as
P, /». During VOR, the pulleys have to be displaced
in such a way that the “quarter-angle rule" is satisfied.
This implies the existence of a neural basis that causes
the pulleys to shift posteriorly during VOR. One ex-
planation to this phenomena is that there are separate
motor neuron pools, or there is a way of adjusting the
synaptic input weights in the same neuron pool, caus-
ing pulleys to move further posteriorly during VOR
(Demer et al., 2000).

2. MODEL OF THE EYE

The model used here was first proposed by Martin
and Schovanec (Martin and Schovanec, 1999; Mar-
tin and Schovanec, 1998) for horizontal saccadic eye
movements. In the original model the geometrical im-
plications due to pulleys were not considered. In this
study, it is attempted to modify the model so that the
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Fig. 1. Effect of pulleys on enforcing the Listing’s
law. Shown here are only the horizontal rectus
EOMs. A: The rotational axis is vertical, i.e.,
perpendicular to the plane Pg. B: When the eye
is in a secondary position of elevation of an angle
6, the rotational axis is perpendicular to the plane
P, ,2(EOMs are shown in thick linesand pulleys
as dark dots).

Fig. 2. Hill-type model of the musculotendon com-
plex.

resulting ocular plant would follow Listing’s eye po-
sitions. The Hill-type model (Hill, 1938; Zajac, 1989)
(Figure 2) used for the musculotendon complex, has
been shown to incorporate enough complexity while
remaining computationally practical.



The muscle of length Z,,, is in series and off-axis by
a pennation angle o with the tendon of length I;. The
pennation effect in this model is an important feature
which will be used later in this paper, to describe the
pulley effect on EOMs. The total length of the mus-
culotendon complex is I;,,,. The muscle has two main
components: an active force generator and a parallel
passive component. The passive component consists
of a parallel elastic element (£},.) which describes the
passive muscle elasticity and a damping component
which corresponds to the passive muscle viscosity
(Bm)- The active component generates the active force
for the muscle, which is the product of length-tension
relation f;(l,,), velocity-tension relation £, (), and
the activation level a(t) (Zajac, 1989). In utilizing
these relationships, analytical expressions that capture
the qualitative properties of the curves will be used.
Alternatively, a natural cubic spline can be fitted to
the data when sufficient data is available.

In order to develop curves to describe the attributes of
a generic muscle, appropriate scaling is done on the
above parameters (Martin and Schovanec, 1999; Za-
jac, 1989). The scale parameters needed for each mus-
culotendon include: maximal isometric active muscle
force, F,, optimal muscle length, I, pennation angle,
a, when [,, = [,, and tendon slack length ;5. All
forces and lengths are scaled as F = F/F, and
I = ln/ls.

The nonlinear passive muscle force which depends
on the muscle length is commonly expressed as in
Equation 1.

Fpe (lm) =
kp:nnflm - lﬂ'LC) + Fme Iy > e
0 otherwise

Here the passive muscle slack length is /,,, corre-
sponds to a length at which no force is generated. The
transition length from the linear to nonlinear region is
Imc corresponding to the force Fy,,..

The total active force generated is quantified as the
product of the force-length and force-velocity curves
and the resulting surface is scaled by muscle activa-
tion. Thus the active force is formulated as

Foet = Fofl(lm)fv(ﬁm) X a(t)

where @, = . Figure 3 shows the variation of
muscle force with muscle length and velocity.

Muscle activation, a(t), is related to the neural input
u(t) via the process known as contraction dynamics
(Zajac, 1989). This process is known to be mediated
through a calcium diffusion and is represented by a
first order differential equation

da(t) 1 1

ST o B (= Bu(e)| atr) =

u(t)
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where 0 < 8 < 1 and 7, iS an activation time
constant that varies with fast and slow muscle.

The tendon shown in Figure 2 as the series elastic
element, assumed to behave non-linearly under mini-
mal extension and then to become linear with stiffness
constant k5 beyond a given length [;. associated with
a particular level of resisting force, F;.. A common
approach is to assume a model of the form

F, = Ky(Fy)iy 2
where
_J keFi + Ky, 0 < Fy < Fye
Kt(Ft) B {ksa Ft ZFtc
Equation (2) can be integrated to obtain Fy:

?(ekw(lt—lts) — ]_), lts S lt < ltc
_ te
Fll) =9 byl — lhe) + Foey 1> e

0, otherwise

The total force in the muscle is the sum of the passive
and active forces, F,, = Fpe + Foet + Bynlm. Muscle
is also known to be isovolumic (Zajac, 1989). Hence
the distance [,, remains constant. This gives

®)

. m
a=——tana.
m

The equation of motion for the muscle mass is

d? (I cos @)

i =F;, — (Faet + Fpe + Bmlm) cosa

M,

ie.,

M, 1, = F, cosa— 4)
. M,,[2 tan? o
c08® a(Fyet + Fpe + Bilp) + —-2——
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The eye is represented as a solid sphere with moment
of inertia Jg. This sphere is rotating about a fixed
point due to the moments of the six extraocular mus-
cles attached to it. But the motion of the sphere is
constrained by Listing’s half angle rule (see Figure 1)
and the muscles satisfying the isovolumic requirement
(Zajac, 1989). The recent notion of enforcing the List-
ing’s law due to pulley motion, can also be explained
using this model. The constant volume requirement
defines the pennation angle « (see Figure 4) as given
in Equation (3). Listing’s half-angle rule requires the
rotational axis to be tilted backward by an angle of
¢/2 as shown in Figure 1. The moment vector m
which is along the rotational axis will be perpendicular
to a plane given by P;/,. Thus the radial distance
vector from the center of the eye globe to the scleral
insertion and the vector which represents the tendon
force, lie on the plane Py s, i.e.,

(FtXT)XIﬁZO

where r is the radial vector from the center of the
eye to the scleral insertion. This uniquely determines
the lateral and medial rectus pulley locations. The
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Fig. 3. A: Isometric Force-length relation and B: Force-velocity relation, for muscle with full activation, i.e.,

a(t) = 1 (Zajac, 1989)

kinematics of the superior and inferior rectus muscles
(which are mainly responsible for vertical eye move-
ment) follows a similar analysis.

The dynamics the eye, which is represented as a
sphere rotating about a fixed point, are described by
Euler’s equations,

Z M, = JGw$7
> M, = Jaiy, (5)
ZMZ = Jow,

This can be written in terms of the six moments gener-
ated by each muscle and a passive moment produced
by orbital tissues, as,

We 6
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i=1

In order to obtain the model in rotational velocities
8, ¢, and 1), the notion of Eulerian angles (Goldstein,
1980) can be used. Thus taking w = (w, wy w;)T and
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4. Superior view of the eye showing the shifts
in horizontal rectus pulley position required to
satisfy half-angle rule in tertiary positions of
adducted elevation and depression. Pulleys are
shown as rings.
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The torsional component ¢ can be eliminated using
o sin(0) sin (@)
¥ = cos (1 + cos(6) cos(¢) )’

(Miller and Robinson, 1984) which is due to Listing’s
law.

3. SIMULATIONS

Simulations were done only for few saccades for hor-
izontal eye movements. Predetermined neural com-
mands (Figure 5) were fed into the model and the
resulting trajectories for eye position are plotted in
Figure 6. The motorneurons’ activity is composed
of a tonic (Step) and a phasic (Pulse) component.
During periods of fixation, only the Step is present,
whereas during saccades both the Step and the Pulse
are present (Fuchs et al., 1988). The results are com-
parable to what is recorded experimentally (Robinson,
1964).

4. CONCLUSION

The model discussed in this paper, differs from the
one proposed by (Martin and Schovanec, 1999) in the
sense that it takes into account the mechanical im-
plications due to recently discovered pulleys (Miller,
1989). Here, the notion of pulley motion enforcing
Listing’s law as opposed to the idea of the existence
of a neural circuitry issuing complex commands to the
EOMs, is proposed.
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Fig. 6. Trajectories for 10°, 15°, 20° saccades

In order to satisfy the Listing’s law, the rotational axis
shown in Figure 1 should remain perpendicular to the
plane containing the lines connecting pulleys with the
scleral insertion and the center to the scleral insertion.
For this to happen, the pulleys move in such a way that
the muscle maintains a constant volume by keeping 1.,
(see Figure 4) constant throughout (Zajac, 1989).The
purpose of the Listing’s law is however still not very
clear. One most suggesting idea is that it reduces
the computational or physical work of some system
(Tweed and Villis, 1990). For example, the work of
the perceptual system may be simplified by choosing
one orientation for a given gaze direction (fixing the
“torsional” component according to Donders’ law).

Further work can be done on improving the model that
has been discussed here. Current work on the model
with three pairs of muscles, tries to study the charac-
teristics of motoneuron activities which produce sac-
cadic eye movements in accordance with the Listing’s
half-angle rule. It would also be necessary to look
at the inverse control problem so that for a specific
trajectory, the exact values of the innervations to the
three pairs of muscles can be determined.
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