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Abstract:  This paper addresses the problem of controlling a nonlinear process when linear 
models have been identified at different operating points. A multimodel approach is used to 
to identify and contro l highly nonlinear process. The internal linear model representation of 
the nonlinear plant for conventional robust controller is replaced by the linear parameter 
varying (LPV) model, which introduces transparency while offering distinct advantages for 
nonlinear model-based control. For this LPV structure a robust controller is then designed 
based on H∞ techniques.  Simulation results for a CSTR process are used to illustrate the 
performance benefits of multimodel approach. 
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1. INTRODUCTION 

 
In this paper the control of nonlinear systems subject 
to multiple operating regimes it is addressed. For most 
batch and continuous processes in the chemical, 
biotechnological and power industries, definite 
regimes can be identified during procedures such as 
start-up, shut-down and product shifts. 
 
Incorporating simpler models in each operating region 
can reduce the complexity of the overall model. For 
example, local state-space and autoregresive moving 
averaging exogeneous - ARMAX models can be 
formed using localised perturbation signals and then 
interpolated to give global non-linear state-space and 
NARMAX non-linear ARMAX models (Johansen, 

1993). The identification of local operating regimes 
for an unknown plant is difficult. The problem is to 
identify those variables, which describe the system 
operating behavior. A priori knowledge of the plant 
can be used at this stage. When little knowledge of the 
actual regimes exists, however, it may be beneficial to 
use unsupervised learning methods, such as k-means 
clustering and nearest neighbors, to give an initial 
estimate of the interpolation regions.  
 
The main objective of this paper is to design a 
controller for a nonlinear system that operates in 
several significantly different modes. This makes it 
necessary to have a nonlinear model that accurately 
matches the plant behavior in all operating regimes. 
The first principles models are usually difficult to 
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develop if they have to cover a wide range of 
conditions. The alternative is to identify an empirical 
model from input-output data. However unmodelled 
dynamics which are negligible at one operating point 
may be dominant at another. Therefore it may not be 
easy to select a model  structure that works well in all 
regimes. In addition, in order to uncover all the 
necessary plant dynamics, its inputs required by the 
identification algorithm may not be practically 
implementable due to their large amplitude and/or 
large frequency.  
In this paper it is pres ented a control structure where 
multiple local linear models are identified at the 
different regions of operation, and the robust 
controller design is carried out using this modes.  
The paper is organized as follows. In section 2 the 
multiple model combination is presented. The 
controller is designed in section 3. In section 4  the 
simulation results are presented in section 4 and 
conclusions in the last section of the paper.  
 
 
2.  COMBINING MULTIPLE LINEAR MODELS  
 
 
It will be assumed that multiple linear models have 
been identified to explain plant behavior at different 
operating points. These local models may have been 
obtained either through identification, or by 
linearising a first principles model if one is available. 
Either continuous or discrete models may be used, 
though discrete models are most common. The 
number of models selected is usually related to the 
number of operating conditions over which the 
control system is expected to operate. This task must 
be done in conjunction with the individual controller 
designs since a larger number of models allows more 
accurate plant identification and hence the controller 
based on each model may be more tightly tuned. 
Using fewer models  forces the controller design 
based on each model to be tuned more robustly. 
 
Model parameters are either determined by linearising 
a nonlinear model and assuming equilibrium at each 
operating condition, or , if the plant operates in 
distinct, well characterized regions, models may be 
developed from plant data in those operatin g regimes.  
Input-output models have generally been selected 
when less is known about the system and a nonlinear 
model is not available.  
 
Let there be N local linear models (fig.1) with the 
state space representation : 
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Fig. 1. Basic multiple -model control strategy 
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These local model have been obtained either through 
identification or by linearising a first principles 
model. The models are combined with the validity 
functions to obtain a time -varying global model for 
the plant which will be denoted by M (p, Ai , Bi, Ci, Di 
).  
 
A linear parameter varying (LPV) is used as the 
global model. LPV systems are fixed affine functions 
of time-varying parameter vectors )(tθ  
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The system can be interpreted as LTI systems with 
time-varying parameters, or as linearisations of a 
nonlinear system along a trajectory of the parameter 
θ. Here θ is interpreted to be time -varying model 
validity function vector p(t).   
The nonlinearities of the true plant are captured by the 
functional dependence of the system state-space 
matrices on p(t). The nominal global model is given 
by a map  
 

H ( A(p) , B(p), C(p), D(p) ).                (3) 
 
The LPV system should reduce to the i-th linear state 
space model if pi = 1. The global model has the 
following state-space representation: 
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In this paper  it is proposed to estimate validity 
function pi in an on-line mode, whereas in other 
approaches (Johansen, 1992) these are obtained off-
line, and their dependence on the outputs is therefore 
fixed a priori.  
The reason for combining the local models into a 
single time-varying global model which is to design a 
controller for the global model which is parameterised 
by the validity functions.  
The nominal global model is coupled with uncertainty 
description ∆ to represent the true unknown plant. The 
uncertainty incorporates the effects of  
 

• the errors and uncertainties in the local 
models -  these represent the plant-model 
mismatches around the points where each of 
the models was identified, 

• the errors and uncertainties in the local 
nominal model -  these represent the plant-
model mismatches during transition between 
different regimes.  

 
The uncertainty in the global model, ∆ , which may be 
large during transitions, reduces to the uncertainty in 
the i-th local model when the plant is within the 
domain of the i-th model. The controller is designed 
with a certain degree of robustness against these 
uncertainties.  
 
 
Model validity functions. Probability weighting  
 
Model validity functions are estimates of the validity 
of each of the local models. These functions make up 
a vector  
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where  
 

1)( →tpi  when the I-th model is valid and 

         0)( →tpi otherwise, 
 
and  
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Equation (6) implies that as the plant moves into a 
region where one of the models become more 
trustworthy than the others, the other models lose 
their validity. The idea of using similar functions to 
compare models has also been used in ( Johansen, 
1995). 
 
There area a number of ways of interpreting the 
model validity function, and this is reflected in the 
different methods that may be used to assign them on-
line. Some possible approaches are: 
 
• Fuzzy logic. Here the model validity functions 

are interpreted as set membership functions, and 
are estimated off-line. This is the approach taken 
in (Zhao, 1995). 

 
• Bayesian estimation. Given the conditions on the 

model validity functions, one way of interpreting 
them is as model probabilities, i.e. pi(t) is the 
probability of the i-th model being valid. The 
values of these may be estimated on-line from 
plant measurements using Bayes theorem.  

 
• Simultaneous state and parameter estimation. 

The validity functions can be treated as 
parameters of the global model and estimated 
online using a moving horizon based estimator.  

 
In this paper the Bayesian estimation is considered. 
Let the plant measurements be denoted yi, and the 
measurement history by Yi = [y1, y2, . . . ]T. Let p (j | 
Yi ) denote the probability that the model i best 
describes the plant given the measurement history till 
time ti.  
 
Then applying Bayes theorem 
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where f ( yk | i , Y k-1 ) is the probability distribution 
function of the outputs of the i-th model at time tk 
given the measurement history Y k-1.  
 
Equation (7) describes how an incoming plant 
measurement changes the belief about model validity, 
i.e. how the measurement relates the a posteriori 
probability to the a priori probability. If the i-th model 
exactly matches the plant, the model residuals εi will 
be zero-mean, and their covariance will be given by Si 
= CiPiCi+Ri where Pi is the state error covariance of 
the ith Kalman filter, based on the ith model, and, Ri 
is the covariance of the measurement noise in the i-th 
regime.  
 
Then assuming stationarity, 
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Therefore equation (8)  can be substituted into (7) to 
obtain an algorithm for estimating model validity.  
The probability that the i-th model output represents 
the plant at time -step k is given by 
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The measurements residuals e k,i ( measured outputs at 
time k minus estimated outputs from i-th model at 
time step k ) are already available from the Kalman 
filters and the residual covariance matrices S i,k are 
generated using the covariances matrices, also 
available from the Kalman filters. Through only the 
most recent outputs are required, identification is not 
based solely on that single time sample of 
information. Past information on the residuals is 
contained within former probabilities p i, k -1 ; p i, k-2 ;  
etc.  
 
An important addition to equation (9) is a lower 
bound preventing  p i,k from becoming zero 
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This bounding prevent the wind-up phenomenon and  
limits the number of past observations contained in 
the current probability estimate. Large values of d 
yield faster model switching because noncontributing 
model probabilities are kept artificially high. Low d 
values require the probabilities in the equation (9) to 
go through more iterations before i-th controller 
contributes a relevant portion of the overall control 
signal.  
 
Inclusion of d affects the probabilities and for this 
reason very often it find a single model which 
represents the plant, and may not always blend them 
well. This means that it shows convergence to a single 
model rather than a combination of more than one 
model.  
 

3. CONTROLLER DESIGN 
 
The linear local models are described by the state 
space matrices: [ Ai, Bi, Ci,  Di], i = 1..N. These are 
then combined with the model validity functions to 
construct a time-varying global model. The true plant 
is supposed to lie in the family given by M = M(p) + 
∆ (t) where M(p) is the LPV model.  There are two 
approaches to robust controller design for such 
systems: 
 

1. Traditional robust control. Here pi are treated 
as uncertainties, and a single LTI controller 
for all regimes is designed . 

 
2. Self-scheduled control. The controller 

adjusts to variations in plant dynamics by 
estimating values of pi (t) on line and using 
them in the control law to adjust to variations 
in plant dynamics.  

 
As the control law has to include p(t) the controller is 
an LPV system denoted by K(p) 
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where e is the tracking error.  
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Fig. 2  Feedback  loop 
 
The feedback loop is cast into M-∆ form in order to 
use H∞ . To obtain robust stability and performance 
for all possible values of the vector p(t). 
 
The trajectory of the model validity function vector 
p(t) always lies in a polytope whose vertices are 
 

[1 0 . . . 0]T ,  . . . ,  [0 0 . . . 1]T       (12) 
 
The lower fractional transformation of G(p) and K(p), 
is also an LPV system whose state-space matrices 
may be given by 
 

[ Acl (p) ,  Bcl (p) , Ccl (p) , Dcl (p) ]       (13) 
 
These matrices evolve in a polytope of matrices 
whose vertices are: 
 

[ Acl, i (p) ,  Bcl, i (p) , Ccl, i (p) , Dcl, i (p) ] 
 
and are obtained by substituting (12) in (13).  
 
 
 
The closed-loop system is said to have quadratic H∞ 
performance if a single quadratic Lyapunov function 
can be found that establishes global stability. 
Applying the results of (Apkarian et. al., 1994) the 
Lyapunov function is given by V(x) = xT and it is 
shown that designing such type controller is 
equivalent to solving a system of  2N + 1 linear 
matrix inequalities (LMI). 
 
 The controller is LPV and of the form of equation 
(11). The LPV structure being fixed, the LMIs are 
solved using LMI-Lab toolbox from Matlab.  
 
 
 

4. CASE STUDIES. CST R EXAMPLE. 
 
In the previous sections a robust multimodel control 
approach was derived. To demonstrate the 
applicability and effectiveness of the proposed 
scheme, in this section we shall implement the 
proposed scheme to control of a nonlinear  first-order 
exothermic reaction in a continuously stirred tank 
reactor  (CSTR).  
 
The dynamic behavior is described by the following 
state equations taken from (Ray, 1981) 
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x is a vector of dimensionless reactant concentration 
and reactor temperature. The control input  u is the 
dimensionless coolant flow. The physical parameters 
in the CSTR model equations are Da , γ, B, and  β 
which correspond to Damokhler number, the activated 
energy, heat of reaction and heat transfer coefficient, 
respectively. Based on the nominal values of system 
parameters, Da = 0.072 , γ = 20, B = 8, β = 0.3, the 
open loop CSTR exhibits three steady states (x1,x2)A = 
(0.144,0.886), (x1,x2 )B = (0.445, 2.750) and (x1,x2 )C = 
(0.765, 4.705)  where the upper and lower steady 
states (x1,x2)A and (x1,x2)C are stable, whereas the 
middle one, (x1,x2)B is unstable. The plant model is 
merely used for simulation of the dynamics of the 
CSTR.  
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   Fig. 3 , Steady state diagram 
 



Since the optimal operation of any chemical reactor is 
determined by the overall economics of the process, it 
may be desirable to operate the reactor at several 
different steady-states. The system is interesting 
because it exhibits output multiplicity, as can be seen 
from the steady-state curve given in the figure.  
Three linear models of the process are identified 
around the three steady-state points corresponding to 
u=0 on the three branches of the steady-state curve 
(fig. 3). As the middle branch is unstable, so therefore 
is the second model. The dynamics of the system 
change significantly depending upon the operating 
point. The Bayesian approach described in section 
2.1. is used to calculate model validity  functions, but 
with a lower bound of 0.05 on the model probabilities 
to prevent wind-up problems.  
Figure 4 shows the performance of the controller 
when a setpoint trajectory through all three regimes 
was provided. Fig. 5 shows how the model validity 
functions varied with time.  
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Fig. 4 .  Controller performance with three  models. 
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Fig. 5. Model probabilities with three models  

5.  CONCLUSIONS 
 
In this paper it is presented an approach where 
different local linear models have been identified at 
the operating regions. It has been shown that a robust 
H∞  controller can be designed for the nonlinear plant 
based on these local models. This controller is 
parameterised by time -varying model validity 
functions that are estimated on-line.  
 
The major advantage of this approach is to bypass 
most critical aspects associated with gain 
interpolation or gain scheduling techniques in 
accounting for the time-varying nature of the plant, 
and in handling the whole parameter range of the 
plant in one “shot”, that is without extensive 
simulations.  
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