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Abstract:
In this paper we propose a framework for studying fundamental limitations in the control
of thermoacoustic instabilities described by nonlinear models. More generally, the frame-
work applies to general interconnections of lightly damped linear oscillators and nonlinear
static nonlinearities of saturation type driven by broad-band Gaussian disturbances. The
key concept is to replace the static nonlinearities with their corresponding random input
describing functions. This allows the application of classical fundamental limitations
theory to the combustion models. In this paper we interpret the limitations results in the
particular case of a model of a combustion process controlled by on-off actuators.We
also formulate conservation principles to understand the dynamics associated with this
combustion model.
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1. INTRODUCTION

In recent years, spurred by the need for cleaner com-
bustion for gas turbine engines generating power,
there has been a surge of activity in the area of active
control of combustion. The need for active control
arises due to the occurence of so-called combustion
instabilities which arise due to the destabilizing feed-
back coupling between acoustics and heat release.
These instabilities lead to large pressure oscillations in
the combustor which cause increased environmental
noise and decreased combustor durability (Seume et
al., 1997).

The combustion is typically modeled as a so-called
thermoacoustic loop with a linear acoustic system, a
fuel transport delay and a nonlinear static feedback
(so-called heat release nonlinearity). In most com-
bustion literature, the combustion is modeled as a
limit-cycling system. More recently, there have been
attempts to model turbulent combustion as thermoa-
coustic loop driven by a noise model of turbulence
(Lieuwen and Zinn, 2000) (Mezic and Banaszuk,
2000). In both limit cycling and noise driven cases,
there is significant interest in describing the qualitative
and quantitative thermoacoustic dynamics that can be
expected for the reasonable choices of heat release
nonlinearities.
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Experiments show that active control using fuel modu-
lation is an effective way of reducing the level of pres-
sure oscillations in combustors (Seume et al., 1997)
(Bloxsidge et al., 1987) (Fleifil et al., 1997) However,
it has been observed that the achieved reduction of
pressure oscillation varied between experiments from
6dB to 20dB. Moreover, in some cases the attenutation
of oscillations at the primary frequency is accompa-
nied by excitation of oscillations in some other fre-
quencies (Bloxsidge et al., 1987) (Fleifil et al., 1997)
This phenomenon is refered to as secondary peaks
or peak splitting. An explanation of different atten-
uation levels and peak-splitting phenomena has been
presented in (Banaszuk et al., 1999a) in linear actua-
tor case and in (Banaszuk et al., 1999b) in nonlinear
actuator case. The nonlinear case is handled using
random-input describing functions. Results of analysis
using random-input describing functions are in excel-
lent agreement with results of model simulations and
experiments.

In this paper we formulate the results for the spe-
cific case of a lightly damped oscillator with relay
nonlinearity in a feedback loop driven by broad-band
Gaussian noise. However, we expect that the results
can be extended to more general interconnections of
lightly damped linear oscillators and nonlinear static
nonlinearities of saturation type driven by broad-band
Gaussian disturbances. The key concept is to replace
the static nonlinear functions with the corresponding
random input describing functions, which allows ap-
plication of classical fundamental limitations theory.
This idea is straighforward and obviously appealing.
However, there are obvious concerns about the valid-
ity of approximation, the well-posedness of the ap-
proach and the interpretation of results. The results of
the case studies presented in (Banaszuk et al., 1999b)
and in the present paper are encouraging so far.

The paper is organized as follows. In section 2, we
describe the structure of the thermoacoustic loop and
review the describing function framework that allows
us to analyze the general case of noise driven limit
cycling thermoacoustic system. We also propose a
framework for studying the fundamental limits in the
control of combustion systems described by nonlinear
models. In section 3, we describe the effect of noise on
the presence and amplitude of the limit cycle for such
systems. In particular, we demonstrate the stabiliza-
tion that results due to the presence of noise. Finally,
we present the conclusions in section 4.

2. FRAMEWORK FOR STUDYING
LIMITATIONS OF ACHIEVABLE CONTROL

PERFORMANCE USING NONLINEAR
COMBUSTION MODELS

A simple model ((Peracchio and Proscia, 1998) (Banaszuk
et al., 1999a)) of a premixed combustion process is
an interconnection of a linear lightly damped oscilla-
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Fig. 1. Nonlinear model’s block diagram

tor, delay, and a saturating nonlinearity in a feedback
loop. Figure 1 gives the block diagram schematic of
the combustion model. The oscillator represents the
acoustic waves in the combustion chamber. The delay
represents the time it takes the fuel and air to mix in
a premixing nozzle, transport to the flame front, and
react. The saturating nonlinearity represents the non-
linear dependence of a heat release rate on the fuel to
air ratio at the flame front. The feedback loop models
the effect of oscillations of air mass flow in the nozzle
on the fuel to air ratio and hence on the heat release
rate. Only the output of the oscillator (pressure) is ac-
cessible for measurement. Depending upon the exper-
imental conditions, a strong broad band disturbance
(representing turbulent velocity fluctuations) may be
driving the system at the input of the linear oscillator.
The control input (representing fuel modulation) adds
to the disturbance input.

We use the random input describing functions (Gelb
and Velde, 1968) to analyze the thermoacoustic sys-
tem described above. We assume that the random tur-
bulent velocity fluctuations driving the thermoacoustic
loop may be modeled as a Gaussian process. Assume
that the signal at the input of a static nonlinear function
���� is of the form

���� � � �������� �� � ����� (1)

where ���� is a zero-mean Gaussian random variable
with standard deviation 	 and �
������ � �� is a
sinusoidal signal with a random phase � uniformly
distributed over �	� 

�. In a random input describing
function analysis, the output of the nonlinear function
���� � ������� is approximated by

����� � ����� 	�� �������� �� ������ 	������
(2)

The describing functions are chosen to minimize the
variance of the approximation error and are given by
(Gelb and Velde, 1968)
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Fig. 2. Model of the controlled combustion process
with on-off valves.
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In the presence of Gaussian noise ����� (with power
spectral density �������) modeling the disturbance in-
put (see Figure �), the forced response of the thermoa-
coustic feedback loop admits a quasilinear description
in terms of the describing function gains. The corre-
sponding equations for self-excited oscillations (due
to the presence of limit cycle) together with driving
noise are

� ������ 	�������� � 	 (5)

������� � � ������

� ������ 	�������
��������� (6)
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where 	� is the variance and ��� the power spectral
density of the pressure output ���� (see Figure 1).

We discuss the extensions of the fundamental limi-
tations results in the simplest case of a linear stable
combustion model (this represents operation at a cer-
tain high fuel/air ratio condition). Here, the effect of
nonlinearity in heat release function is neglected and
its linearization is incorporated in the transfer function
������. The resulting model is represented by block
diagram shown at Figure 2. We focus on the effect
of nonlinear actuator characteristic on the achievable
control performance. Specifically we focus on on-off
actuators. Using random input describing functions,
the Fourier transform of the Gaussian component of
combustor pressure can be represented by the formula

������ � ������������� 	�������� (8)

where ������ is the Fourier transform of the driving
disturbance and

������� 	� �
�

� ������������ 	�������
(9)

is a modified sensitivity function that depends on the
magnitude of the limit cycle � and standard deviation
	 of the Gaussian component at the input of the relay
nonlinear element representing the actuator character-
istic. So far, this is a merely formal expression, as we
have not shown that the modified sensitivity function
represents a stable system and that there are values of
	 and � for which the limit cycle and Gaussian pro-
cess balance is achieved in the control loop. Results
of analysis presented in following sections will show
that there are values of 	 and � for which the limit
cycle and Gaussian process balance is achieved and
that the modified sensitivity function is indeed stable
for all values of input noise level. Therefore, we can
extend fundamental limitation results to the case of
linear stable combustion process controlled with on-
off actuators. A case study for this particular case has
been carried out in (Banaszuk et al., 1999b).

The above methodology for extending fundamental
limitations is applicable to the more general case of
control of nonlinear thermoacoustic loop with static
nonlinearities both in the heat release path as well
as the control path (due to saturating actuators). This
provides a conceptual framework to interpret the fun-
damental limitations in the control of nonlinear com-
bustion processes and thus explain effects such as peak
splitting observed in the control of combustion. The
key concept is to replace the static nonlinearity with
the corresponding describing function gain. The for-
mal method described above applies if one can show
that the sensitivity function remains well-posed for the
Gaussian driver. This is done for the special case of
Figure 2 in the following section.

3. CONSERVATION RELATIONS IN DYNAMICS
OF COMBUSTION

In this section, we discuss the well-posedness of the
sensitivity function for the case of linear stable com-
bustion model (������) driven by Gaussian noise and
controlled with an on-off actuator modeled as a relay
nonlinearity

���� � �� � � 	

���� � � 	� (10)

For relay nonlinearity, the amplitude of the limit cycle
can be found from solving the loop equation (�)

� ������ 	������� � 	� (11)

The following theorem summarizes the results for the
relay nonlinearity in the limiting cases of 	 � 	 and
	 ��.

Theorem 3.1. For the relay nonlinearity,
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and there is an amplitude-independent bound
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(14)

for the describing function gain corresponding to the
limit cycle.

We provide the proof in the Appendix. The signifi-
cance of the above results is that for a relay nonlin-
earity

(1) in the limit 	 � 	, the limit cycling system
admits a gain margin of 
 (with respect to the
Gaussian noise) at the frequency of limit cycle,

(2) there exists 	
 such that �	 	 	
 , the loop can
not support a limit cycle and

(3) in the limit 	 ��, the loop behaves as the open
loop system (������).

To see (1) above, note that at the frequency �� of the
limit cycle,

��
�������� � ��� (15)

so using (��), one obtains

��
�������� � ��



� (16)

To see (2) above, note that the limit cycle equation (��)
ceases to have a solution for a choice of
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We thus have a conservation principle (in the limits
	 � 	, 	 ��) for the thermoacoustic loop with the
choice of relay heat release nonlinearity :

(1) For 	 � 	, the appearence of the limit cycle sta-
bilizes the loop with respect to the noise thereby
yielding a bounded input-output response (for
the Gaussian noise driver) as solution of equation
(�) and

(2) for 	 � �, large noise stabilizes the loop with
respect to the limit cycle thereby causing the
limit cycle to disappear and system to behave as
a stable noise driven system.

Before we present numerical results for the intermedi-
ate values of 	 for the relay heat release nonlinearity,
we state a conservation equation for the relay nonlin-
ear function ����:

Theorem 3.2. For the relay nonlinear function with
inputs �� 	 
� 	

������
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The proof is again deferred to the Appendix. Here,
we discuss the implications of the above result. Using
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Fig. 3. The amplitude of the limit cycle in the presence
of the Gaussian noise

(��), a limit cycle with harmonic component at fre-
quency �� leads to the sinusoidal describing function
gain for the heat release nonlinearity in the thermoa-
coustic feedback loop given by

���	� � ��
� � � �

�������
� (19)

We thus obtain for the thermoacoustic loop

��
�

���

�	
� ��	��	���

�	
� (20)

i.e., any increase in the quantity 	�� (variance of
the signal at the nonlinearity output driving the linear
system ������ in the thermoacoustic feedback loop)
is balanced by decrease in ��, the amplitude of the
limit cycle.

We next provide complete results for the case of re-
lay heat release nonlinearity indicating the tradeoff
between limit cycle amplitude and noise variance. In
the absence of noise, the closed loop system exhibits
a limit cycle with amplitude ��, which results from
the solution of the equation (��). The presence of
Gaussian noise driving the system has the effect of
supressing the self-excited oscillations. In particular,
with a relay nonlinearity, the amplitude of the self-
excited oscillations is easily shown to satisfy the equa-
tion
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It then follows that ��	� � ��. Figure 3 plots the
numerically computed solution of the integral equa-
tion (21). Thus, the presence of noise (	 � 	) leads
to a reduction in the amplitude of this limit cycle
and at a critical positive value of 	 � 	�, the limit
cycle disappears (��	�� � 	) and the random input
describing function gain

�� �

�
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For the values of 	 � 	�, the gain ���	� was
numerically computed using the relationships (�) and
(�). Figure 4 plots the gains ���	� and ���	�. For
the values of 	 where limit cycle is present,

�� � ��
� � 	 � 	�� (23)

with a transition at 	�, the critical 	 where the limit
cycle ceases to exist. �� monotonically increases
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between 	 and 	� and decreases for values of 	 � 	�.
We have

�����	�� 	� �
��
�
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The last inequality ensures that the feedback intercon-
nection of ������ and �����	�� 	� is linearly stable
for all 	 
� 	�. The second equality in (
�) implies
that the largest loop gain occurs at the critical value
	� where the loop is arbitraily close to destabilization
(eigenvalues on the imaginary axis). For values of 	
away from 	�, the eigenvalues move in to the LHP
thereby ensuring asymptotic stability for all 	 
� 	�.

We have thus shown that the modified sensitivity
function (9) is a stable for the Gaussian noise driver
and thus the extensions of the fundamental limitation
result discussed in section 2 are valid.

4. CONCLUSION

In this paper, we have shown the utility of conser-
vation relations in understanding both the dynamics
and control of combustion instabilities. The dynamics
are understood as a trade-off between the variance of
the pressure output of the thermoacoustic loop and the
amplitude of the limit cycle present. The random input
describing function framework allows one to extend
the linear fundamental limitations to the control of
combustion. In particular, this allows one to under-
stand the so-called peak-splitting phenomenon for the
combustion with static nonlinearities.

5. APPENDIX

Proof of Theorem 3.1 The proof of equations ��
� and
���� are obtained by direct computation using equa-
tions ��� and ���. To prove the amplitude independent
bound ����, we express the equation ��� as
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where the first part is zero because
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� � �� (26)

for a relay independent of � and
� ��
�


����� � 	. The
equation ���� then follows by
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Proof of Theorem 3.2 If 	 
� 	, on multiplying both
sides of the equation ��� by 	 and differentiating with
respect to 	, one obtains
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and for a relay nonlinearity, the right hand side gives
the boundary integral
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The proof is then completed by differentiating ��� and
computations similar to ones provided above yield the
equation
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Using equations �
�� and ��	�, we obtain the equation
����
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� 	� (31)

thus proving the result.
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