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Abstract: Moving mesh methods is a class of methods for model reduction of PDE
models, based on a dynamically moving discretization mesh. Moving mesh methods
ha vebeen widely used for solving differential equations involving large solution
variations. The methods can roughly be divided into moving finite difference
methods (MFD) and moving finite element methods (MFEM). In this paper we
consider these methods from a feedback control point of view and use results from
con troltheory to provide a plausible explanation for the robustness problems
encountered in most of the methods. Based on these results w ealso propose a
no vel meing finite element method, OCMFE, in which the error introduced by
the spatial discretization is estimated based on residual calculations and a simple
feedback control algorithm is employed to adjust the size of the various elements
such that the estimated model reduction error is equidistributed over the spatial

domain.

1. INTRODUCTION

In order to solve nonlinear partial differential
equations (PDEs) numerically, model reduction
is usually required, i.e., discretization to a set of
ordinary differential equations. Various properties
such as accuracy, efficiency and stability are usu-
ally considered when evaluating whether a specific
discretization method is suitable to solve a specific
problem. The requirements for different types of
problems are in general dissimilar. F or problems
which do not have a critical requirement on effi-
ciency , but rather on accuracysuch as in specific
simulations, fine discretization grids can be used
to ac hiev e acceptable accuracyFor instance, finite
elements, or volumes, on fine discretization grids,
are commonly used in fluid mechanics and chem-
ical engineering. How eer, in many problems it is
crucial that the reduced model is of a relatively
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low order, e.g., in controller synthesis, parameter
fitting and bifurcation analysis.

One class of methods which aims at low order
models in model reduction of PDEs is the so-called
moving mesh methods, e.g. (Huang et al., 1994).
In these methods, a mesh equation involving the
node speed is employed to calculate the meshpoint
locations simultaneously with the solution of the
differential equations. Iprinciple, the idea is to
concentrate a mesh, which has a fixed number of
nodes, in regions of rapid solution variations, e.g.,
steep wave frorts and shocks.

During the last tw o decades, maring mesh meth-
ods have attracted significant atten tion, and a
large number of methods havebeen proposed
in the literature, e.g., (Dorfi and Drury, 1987),
(Huang et al., 1994), (Miller and Miller, 1981),
(Miller, 1981), (Sereno et al., 1991). The methods
can roughly be divided into tw o categories, mo-
ing finite difference methods (MFD) and moving
finite element methods (MFEM), depending on



the spatial discretization method employed. In
MFDs, the equidistribution principle is central,
and implies that the mesh is moved in order to
spatially equidistribute some measure presumably
related to the model reduction error. In MFEMs,
the mesh is moved to minimize some estimate of
the model reduction error.

Although the principle idea of moving mesh meth-
ods is relatively simple, there exist a number of
problems with the proposed methods. These are
mainly related to stability robustness with MFDs,
and algorithm complexity and sensitivity with re-
spect to a large number of parameters, which the
user furthermore must define, with MFEMs (e.g.,
(Huang et al., 1994),(Li et al., 1998)). In fact,
essentially all methods add “fixes”, with labels
such as “smoothening” and “viscosity” functions,
in order to improve the stability of the mesh
control.

In this paper, moving mesh methods are studied
from a control perspective. The algorithm deter-
mining the mesh movement can be interpreted as
a feedback controller, with the estimated model
reduction error as the input. By analyzing the
control problem, we determine a reasonable struc-
ture of the multivariable controller. Furthermore,
we show that the control algorithms employed in
most methods correspond to pure integral control.
Based on this, we provide a plausible explana-
tion for the robustness problems encountered in
many methods and propose that a somewhat more
advanced control algorithm, involving phase-lift,
should be employed.

We start by analyzing finite difference methods
and then continue to develop a MFEM method
which employs orthogonal collocation within the
elements and moves the mesh using a relatively
simple controller based on the equidistribution
principle. This method combines the advantage
of an efficient discretization method and an easily
computable residual, with a very simple control
algorithm compared to what is employed in pre-
viously proposed MFEMs. The simplicity of the
control algorithm implies that little or no demand
is put on the user in selecting method param-
eters. We here limit ourselves to consider one-
dimensional problems, but extension to higher
spatial dimensions is relatively straightforward.

The proposed method is demonstrated by appli-
cation to a simulation problem involving a steep
moving front. In (Liu and Jacobsen, 2002) an
application of the method to bifurcation analysis
of a reaction-convection-diffusion problem is pre-
sented.

2. MFD FROM A CONTROL PERSPECTIVE
2.1 Background of MFDs

Consider a general one-dimensional PDE

w = flu,z,t), €@, 0<t<T, (1)

with initial and boundary conditions u(z,ty) =
uo(x), b(u,z,t) = 0. Introduce the mesh equa-
tion g(z(§,t),u) = 0, in which z and £ denote the
physical and computational spatial coordinates,
respectively. By employing the total derivative,
equation (1) can be rewritten as

U= ud + f(z,u,t) (2)

The equidistribution principle, employed in most
moving mesh methods, involves determining a
positive monitor function M (z,t), which provides
some estimate of the computational error in the
solution of the underlying PDE, and then equidis-
tributing M (z,t) over the spatial domain for all
t. Mathematically, this can be expressed as

/Ox(&t)M(x’u)dm:f/olM(m,u)da: (3)

By differentiating (3) with respect to £ twice, the
right-hand side of the differential form vanishes.
Hence it is natural to define the error measure as
the left-hand side of the differential form of the
EP

0

(4)
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Two types of monitor functions M, arclength and
curvature, are commonly employed in MFD meth-
ods. Thus, the model reduction error is inherently
assumed to be directly proportional to the first
and second order spatial derivative of the solution
u, respectively.

A large number of different MFD methods have
been proposed in the literature, e.g., (Dorfi and
Drury, 1987), (Huang et al., 1994), (Hyman and
Naughton, 1984). The main difference between
the methods stems from different approximations
and discretizations of the EP (3). As pointed
out by Li et.al. (Li et al, 1998), all available
MFD methods can be seen as regularizations of a
DAE system involving the semi-discretized forms
of the underlying PDE and the EP constraint.
However, the methods often have poor stability
robustness, are highly problem dependent and it is
in many cases difficult to choose the regularization
parameters for the resulting ODE model.

In the following, we shall consider the equidistri-
bution problem from a control point of view.



2.2 MFDs from a control perspective

Considering the error measure E as the output
and the mesh nodes x as the input signal, the
objective is to employ feedback control to keep
the error £ small. Write the system on a time-
dependent matrix form

E(t) = A(t)z(t) ()
where A(t) can be obtained by discretizing (4).

Ideally, one would like to keep the error measure
E equal to zero for all ¢, which would then
correspond to perfect control. However, this would
correspond to the DAE formulation considered in
Li et al. (Li et al., 1998), which was found to have
poor stability properties. To avoid this, the error
is forced to decay with a time constant 7y, i.e., the
bandwidth requirement is relaxed. We specify the
closed-loop system as

B(t) = - - B() ()
TI
Combining (6) with the differential form of (5)
yields a moving mesh controller involving a dy-
namic term A(t), which is computationally diffi-
cult to obtain. Therefore, we neglect this term to
obtain the mesh controller

A(t)(t) = ——B(1) ™)
TI

which is a pure I-controller. The mesh controller
(7) is equivalent to the method MMPDEA4, pro-
posed by Huang et. al. (Huang et al., 1994). Note
however, that they derived the method in a com-
pletely different way, namely based on a specific
discretization scheme for the EP (3).

Except for MMPDE2, proposed by Huang et.al.
(Huang et al., 1994), which involves the dynamic
term A(t) and therefore gives rise to computa-
tional difficulties, all other available MFD meth-
ods can be seen as model based controllers based
on simplified models. Furthermore, the mesh con-
trollers of almost all available MFDs are essen-
tially pure integral controllers. From control the-
ory, however, it is well known that pure I-control
usually will give rise to significant oscillations,
or even instability, if the control bandwidth is
pushed too high. This may explain why many
MFDs experience oscillations and even instability,
depending on the underlying problem and choice
of control parameters.

To handle the stability problem, most available
MFDs use several additions to the basic moving
mesh algorithm, such as “smoothing” functions
on either meshpoints or monitor functions, either
globally or locally. See e.g., (Li and Petzold, 1997).

By using a smoothing function, several extra pa-
rameters need to be specified by the user. Further-
more, the specific choice of smoothing parameters
have been demonstrated to be critical for many
problems, e.g., (Huang et al., 1994).

The smoothing technique used in most MFDs
can be considered equivalent to employing a more
advanced control algorithm in order to improve
the stability properties of the problem. However,
to obtain the same effect in a more systematic
fashion, we here propose to employ a slightly more
advanced controller, such as a PID-controller,
which can provide a phase-lift to improve stability.

We finally note, that although one is able to derive
a good and robust control algorithm for MFDs,
the error estimate employed is very crude and may
often be a poor representation of the true error.
For instance, we observed that for an unscaled
problem which involves a steep but small moving
front, the arclength monitor is not working well
because the arclength at the front region does
not differ much from that of the flat regions. For
pure reaction-diffusion problems, such as Fisher’s
equation, Li et.at. found that moving finite differ-
ence methods based on arclength monitor func-
tions are not suitable, because the convection term
uz& introduced by moving mesh methods causes
large truncation errors comparing with the origi-
nal truncation error of the discretized PDE (Li et
al., 1998). Qiu et.al. have in (Qiu and Sloan, 1998)
formulated a specific monitor function to fit the
properties of the Fisher’s equation in which larger
weight are given to the leading high curvature re-
gion., i.e., nodes are denser at the front than at the
back. However, these methods are highly problem
dependent and it would obviously be preferable
to have a more general method for estimating the
model error, such as those employed in MFEMs.
We next propose a method utilizing a more rig-
orous error estimation, and combine this with the
simple control problem resulting from employing
the equidistribution principle.

3. MFEM FROM A CONTROL
PERSPECTIVE

3.1 Background of MFEMs

In general, discretization based on finite elements
provides a higher accuracy than finite differences
for a given model order. Thus, one might expect
MFEMs to be more efficient than MFDs.

A number of MFEM methods have been proposed
in the literature. The pioneering work was done by
Miller and Miller (Miller and Miller, 1981) who
employed piecewise linear approximations in each
of the elements. In this case, the mesh movement
is based on minimizing the residual of the original



equations written in finite element form, and can
be closely associated with the equidistribution
principle. As for the case of MFDs, the resulting
set of DAEs needs to be regularized (Miller and
Miller, 1981), thereby introducing a number of
control parameters. The MFEM methods, while
cited as highly efficient for many problems, have
often been criticized for their complexity and sen-
sitivity to the users choice of control parameters,
e.g., (Furzeland et al., 1990). As in the case of
MFDs, MFEMS typically contain “fixes”, such
as “spring” and “viscosity” functions, to improve
stability, e.g., (Sereno et al., 1991).

Sereno at. al. (Sereno et al., 1991) proposed a
method similar to that of Miller and Miller, but
based on orthogonal collocation within the ele-
ments. The method requires the user to choose
a total of 6 control parameters, and no guidance
is provided as to how these should be chosen.
However, from the examples presented in (Sereno
et al., 1991), it appears that the choice of the
parameters is highly critical.

The main reason for the complexity and large
number of parameters in available MFEM meth-
ods is that the authors implicitly derive a model
based control algorithm, based on a model which
in itself is highly complex. However, from control
theory, it is well known that relatively simple
controllers may provide good performance even
on complicated processes when the principle of
feedback is employed. We therefore propose to
employ a simple feedback controller for MFEMs,
similar to the controller derived for MFDs above.
As the underlying discretization method, we em-
ploy finite elements with orthogonal collocation
on the elements.

3.2 Orthogonal collocation on moving finite elements

(OCMFE)
Introduce the notation z;;, ¢ = 1,---,n, j =
1,---,m+2 for the computational mesh, in which

n and m denote the number of elements and
their interior nodes, respectively. The elements are
connected by letting w;1 = wi—1 m+o2-

Denote {z1, 22, - , Zm42} as the zeros of the m +

l-order Jacobi polynomial Pr(nﬁ’g) on the inter-
val [0,1], @ and S being weightings on the re-
spective end points. Given a set of interpolation
points {z1, 22, -+ , Zm+2}, the Lagrange interpola-
tion polynomials are defined as

m—+2
|
Ly

zZ
j=tg#i

li(z) =

For simplicity, we here assume that the poly-
nomial order is the same within each element.

However, this can easily be modified to include
different polynomial orders within the elements.

Given two end points of an element, The location
of the interior nodes of the element are kept
constant relative to the normalized length [0, 1],

zij = xin + (Az); 25, (Az); = Timg2 — i
From the definition, the interpolation polynomials
are identical for all elements. Define a (m+2)
by (m+2) matrix @ and its first and second
derivatives Q(Y), Q) respectively,

i:j)pzla"')m+2

where [, is the (m + 1)-th order Lagrange poly-
nomial on the interval [0, 1], l;, is the (m + 1)-th
order Lagrange polynomial in element .

Applying the orthogonal collocation method within
each element yields

m—+2 m—+2

uii(t) =Y lip(ai)uip(t) = Y Qjiuip(t)

One advantage of using a collocation method is
that the error introduced by discretization easily
can be estimated from residual computations at
non-collocation points. For this purpose, intro-
duce a new mesh within each element ¢, consisting
of the midpoints between the collocation mesh-
points, & = %(m” +zipp1), 7 =1,--- ,m+ 1L
Define a (m+1) by (m+2) matrix Q,

A def, o, .

Qrj = 1(2r), = Lij (&ir),
where 2, is a normalized non-collocation grid
which satisfy 2, = 2,41 — 2,, with [; being the
(m+1)-th order Lagrange polynomial in [0, 1].
This yields

j=1,,m+2

. m—+2 m—+2

~ de o ~ A

dip = w(in,t) = Y Lij (@i )uig = Qujugj
=1 i=1

From the formulation (2), the residuals at Z;. can
then be computed directly from values of u;; on
the computational grid

Rir = air - (uz)iri’ir - fir
m—+2 m—+2

A . i+ @ .
=3 Quing— Y Qg)uij(wifﬂ) i
1 j=1



Define the residual-based monitor function as

def m+1
M; = Z |Rir|(xi,r+1 - mi,?")a

r=1

t=1,--,n—-1

The monitor function provides an estimate of how
much the discretized model deviates from the orig-
inal PDE system in a given element. Rather than
attempting to minimize the overall deviation, we
employ the equidistribution principle. Denoting
the element errors as

n

. M;

E; déf M; — ijl J
n

we employ a simple decentralized PI-controller on

every moving boundary of the elements,

. K .
(Az),=——LE; - K,E, i=l,--n (8)
TI

The element boundaries are then given by

i—1

Fin = dimis = Y (Aw);, i=2,--,m

j=1

where the left and right boundary of the overall
spatial domain are fixed at all times ¢. Note that
only two parameters, K, and 77, needs to be
specified by the user and that these have a clear
interpretation in terms of the mesh control.

From a number of examples, we have found this
relatively simple control algorithm to be both
efficient and robust. However, to improve the
method one may consider applying more advanced
control, such as full multivariable control with
phase-lead elements. A more in-depth analysis of
the robustness of the algorithm will be presented
elsewhere.

4. NUMERICAL EXPERIMENTS

We consider here the convection-diffusion-reaction
problem

6_a+6_a—R + 1 62_a
Or  dxr Y Py 0z
00 90 1 0%
E_‘_%_RG_‘_(S(QH_Q)-{_E@
_ Y B
R,=D,(1—-a) emp<71+66>

where a is conversion, § temperature, 7 time and
x position, all dimensionless.

We discretize the model using MFD with mesh
controller (7) and OCMFE (8), respectively.

To test the accuracy of the resulting reduced order
models, we perform simulations with the following
parameters § = 3.0, D, = 0.15, f = 2.0, n = 1.5,
v =12.0, P.p; = 500 and P,y = 500. The initial
profiles are steady-states obtained by letting the
coolant temperature 8y = 0.3, and at t = 0T
01 is changed to —0.3. A “reference solution” was
obtained using moving finite elements with a very
fine grid, corresponding to a model with approx.
400 ODEs.

Figure 1 shows the solution obtained with the
MFD using 50 internal nodes, i.e., a reduced order
model with a total of 150 ODEs. The discretiza-
tion was performed using a 1st order upwinding
scheme. The arclength monitor was used for error
estimation, and the control parameter was chosen
as 77 = le — 3. Smoothing was required in order
to obtain reasonable results, and the smoothing
parameters were chosen based on trial and error.
Also shown in Figure 1 is the reference solution
and a solution obtained with finite differences
on a fixed uniform mesh with 100 nodes (200
ODEs). From the figure we see that the MFD
model with 150 ODEs provides a significantly
better approximation than the FD model with 200
ODEs. However, we note that a “tail” appears also
in the MFD solution.

Figure 2 shows the solution obtained with the
proposed OCMFE using 4 elements, each with 5
internal collocation points (50 ODEs). The control
parameters were chosen as K}, = 1 and 77 = le—3.
As seen from the figure we obtain a solution which
is very close to the reference solution. Thus, we
find that the 50th order MFEM model is superior
to the 150th order MFD model for this problem.
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Figure 2. Conversion fort=0:.2:1
Solid - MFEM, Dashed - reference
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5. CONCLUSIONS AND COMMENTS

We have in this paper analyzed moving mesh
methods from a feedback control perspective.



Based on the analysis, we proposed a plausible ex-
planation for the performance and stability prob-
lems experienced with existing MFD methods.
A reasonable structure of the multivariable mesh
controller was developed in a systematic fashion,
and it was proposed to add phase-lift elements
in the controller in order to improve the stability
robustness of the algorithm.

Available MFEM methods are based on highly
complex controllers, which furthermore contain
a large number of control parameters that must
be chosen by the user. In this work we proposed
a method based on orthogonal collocation on
moving finite elements - OCMFE - by combing the
equidistribution principle and a relatively simple
control algorithm. A monitor function based on
estimated residuals in the elements was employed
in order to obtain an estimate of the model error.
The performance of the method was demonstrated
by application to a reaction-convection-diffusion
problem, involving a steep moving front.
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