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Abstract: A new minimal parametrization of multivariable linear system is proposed. The
parametrization is defined as a perturbation around the realization of a nominal transfer func-
tion. A particular parameter basis is selected which, for the impulse response identification
problem, leads to a Hessian matrix of the criterion function which is equal to the identity
matrix.
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1. INTRODUCTION

This paper introduces a new parametrization of multi-
variable linear dynamical systems. The parametriza-
tion is based on a local affine map around a nomi-
nal system. This type of local parametrizations was
introduced in the papers (Wolodkinet al., 1997),
(McKelvey and Helmersson, 1997) and (McKelvey
and Helmersson, 1999). Some system theoretical as-
pects of such parametrizations has been shown in
(Deistler and Ribartits, 2001). The current contribu-
tion is a development of these ideas and provides a
more computationally efficient way of deriving such
parametrizations as well as some additional and alter-
native insights.

1.1 Preliminaries

Consider a state-space representation of a linear sys-
tem

x(t +1) = Ax(t)+Bu(t)
y(t) =Cx(t)

(1)

where the vector signalsu(t) 2 R
m, y(t) 2 R

p and
x(t) 2 R

n are the inputs, outputs and states respec-
tively. The dimension of the state vector is equal to the
McMillan degree of the linear system if the realization
is minimal, i.e., is both controllable and observable
(Kailath, 1980). In the sequel we will normally assume
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that the realization is minimal so the state dimension
and the McMillan degree coincides. In (1) we have left
out a direct connection (theD matrix) betweenu(t)
andy(t). Inclusion of such a connection is straightfor-
ward and does not significantly change the results of
the paper.

The matrix triple(A;B;C) in (1) defines a relation be-
tween the input signals and output signals via the state.
The input output relation is obtained by solving the
difference equation (1) which yields the convolution
equation

y(t) =
∞

∑
k=1

CAk�1Bu(t�k) = g(k)u(t�k) (2)

where

g(k) =CA(k�1)B2 Rp�m
;k= 1;2; : : : (3)

is the matrix valued impulse response of the system.
From the impulse response, the transfer function

G(z) =
∞

∑
k=1

CAk�1Bz�k =C(zI�A)�1B (4)

is defined for allz 62 λ (A), whereλ (A) denotes the
spectrum (set of eigenvalues) ofA. The triple(A;B;C)
is known as a state-spacerealizationof a linear sys-
tem. When we refer to a specific linear system we
actually refer to its input output relation, i.e., the im-
pulse response or equivalently the transfer function.
Hence, one linear system can have many realizations
both minimal and non-minimal ones.
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1.2 Parametrizations

A parametrizationof a state-space model is a mapping
from a parameter space to the space of state-space ma-
trices, and we can informally write(A(ξ );B(ξ );C(ξ ))
to illustrate that the pointξ in the parameters space
defines a state-space realization which in turn defines
a transfer function.

It is well known (Kailath, 1980) that the input-output
relation is unchanged by a linear non-singular basis
change of the state variables, i.e., ifT 2 Rn�n is non-
singular matrix representing the change of basis, then
the realizations(A;B;D) and(TAT�1;TB;CT�1) rep-
resents exactly the same impulse response and hence
the same linear system. The change of basis is called
a similarity transformation. Consequently, if a linear
systems of a given order is parametrized using all
elements of the state-space matrices the parametriza-
tion is not identifiable. Loss of identifiability by such
an over-parametrization is not a severe restriction if
the identification techniques used is prepared for such
a situation (McKelvey, 1994; Pintelonet al., 1996).
However the numerical complexity of estimating more
parameters than necessary leads to an increased com-
putation time. Therefore, a minimal parametrization is
desirable.

Minimal parametrizations of linear systems has al-
ways played an important role in system identification
and was and early topic in the development of linear
system theory. The single input single output case
turns out the be rather easy while the multivariable
case where bothm > 1 and p > 1 is much more
involved. Especially for such systems there exists
no single continuous minimal parametrization which
covers the whole space of linear systems (i.e. trans-
fer functions) with a fixed McMillan degree and in-
put output configuration (Luenberger, 1967; Guidorzi,
1975) and (Hannan and Deistler, 1988). Hence it
is necessary to use several (possibly overlapping)
parametrizations when dealing with MIMO systems.

In this paper the focus will be on parametrization
where the state-space matrices are an affine function
of the parameters. Consider the following class of
affine parametrizations2

4 vecA(ξ )
vecB(ξ )
vecC(ξ )

3
5= p0+Pξ (5)

Here vec denotes the vectorization operator which
converts a matrix to a vector by stacking all columns.
The vectorp0 is a fixed vector of sizen(n+m+ p)
and P is a matrix of sizen(n+m+ p)� d whered
is the dimension of the free parameter vectorξ . The
parametrization is uniquely defined by the pair(p0;P)
and we interpretp0 as the realization which the (local)
parametrization is based around.

If the parametrization is of minimal dimension then
d = dmin = n(m+ p). Parametrizations which are
over-parametrized haved > dmin parameters. Ex-
amples of affine parametrizations are the (trivial)
full parametrization withP as the identity matrix
(McKelvey, 1994), the classical observable or control-

lable parametrizations (Kailath, 1980; Ljung, 1999)
(which are minimal ones) and the tridiagonal para-
metrization (McKelvey and Helmersson, 1996). The
recent local parametrizations (McKelvey and Helmers-
son, 1997) and (Wolodkinet al., 1997) also belong to
this class.

The local parametrization described in (McKelvey
and Helmersson, 1997) here calledOrthPar uses the
affine subspace in the full parameter space which is
orthogonal to the tangent space of the corresponding
equivalence class of a nominal realization. In short the
range space of the matrix

Q,
∂

∂ (vecT)

2
4 vec(TAT�1)

vec(TB)
vec(CT�1)

3
5
������
T=In

=

2
4 AT 
 In� In
A

BT 
 In
�In
C

3
5

(6)

spans the tangent plane of the equivalent class defined
by by the nominal realization(A;B;C). OrthPar uses

p0 =

2
4 vecA

vecB
vecC

3
5 and P= Q?

as a parametrization whereQ? is an orthonormal
matrix which spans the orthogonal complement to the
range space ofQ. For more details see (McKelvey and
Helmersson, 1997; McKelvey and Helmersson, 1999).

2. IMPULSE RESPONSE BASED
PARAMETRIZATION - ORTHIMP

In this section we develop an alternative way of calcu-
lating the matrixP in (5). Define the impulse response
vector based on the 2n vectorized impulse response
matrices, i.e.

g, [vec(g(1))T
; : : :vec(g(2n))T ]T 2 R2nmp (7)

From realization theory it is clear that a transfer func-
tion of McMillan degreen is completely specified by
the 2n first samples of the impulse response (Ho and
Kalman, 1966). Hence,g is an alternative representa-
tion of the linear system of ordern.

Consider a full parametrization of a state-space model2
4 vecA(θ )

vecB(θ )
vecC(θ )

3
5= θ 2 Rn(n+m+p) (8)

Pick an arbitrary transfer function of McMillan degree
n and let the parametrized matrix triple(A(θ );B(θ );
C(θ )) for θ = θ0 be a minimal realization of it. Let
g(θ ) be the corresponding impulse response vector
according to the definition in (7).

A Taylor expansion ofg(θ ) around the minimal real-
ization defined byθ0 is given by

g(θ0+δθ ) = g(θ0+δθ )+g0(θ0)δθ +o(jδ j) (9)



whereg0(θ0) =
∂

∂θ g(θ )
���
θ=θ0

2 R2nmp�n(n+m+p) is the

Jacobian matrix of the impulse response functiong(θ )
at θ = θ0.

Lemma 1.Let g(θ0) represent a minimal realization
of McMillan degreen. Then the range space ofg0(θ0)
has dimensionn(m+ p)

Proof: Since the equivalence class of realizations
with identical impulse responses is of dimensionn2

(represented by the similarity transformT) the Jaco-
bian matrixg0(θ0) must have a null-space of at least
dimensionn2. Hence the dimension of the range space
is bounded from above byn(n+m+ p)�n2 = n(m+
p).

Now pick a minimal parametrization such that the
point ξ in the parameter space, which represents
the transfer function, is in the interior of the pa-
rameter space. This is always possible for example
using the partially overlapping parametrizations de-
scribed in (Ljung, 1999, Appendix 4A). Let the triple
(Am;Bm;Cm) represent the resulting realization de-
fined by the parameter vectorξ . Explicitly we can
write 2

4 vecAm
vecBm
vecCm

3
5= pm0+Pmξ (10)

whereξ 2 Rn(m+p) is the parameter vector of the min-
imal parametrization andPm is matrix with linearly
independent columns which distributes the parameters
to the right places in the matrices. The vectorpm0 rep-
resent the constant elements of the state-space matri-
ces implied by the particular parametrization chosen.

Since both(A;B;C) and (Am;Bm;Cm) have the same
transfer function there exists a non-singular similarity
transformationT such that

(T�1AmT;T�1Bm;CmT) = (A;B;C)

which in a vectorized form is given by (remember the
formula vec(XYZ) = ZT 
X vecY)2

4 vecA
vecB
vecC

3
5= T̄(T)

2
4 vecAm

vecBm
vecCm

3
5 (11)

T̄(T) =

2
4 TT 
T�1 0 0

0 Im
T�1 0
0 0 TT 
 Ip

3
5

where
 is the Kronecker product andIm denotes
the identity matrix of dimensionm�m. It is easy to
establish that ifT is non-singular so is alsōT(T). We
can now explicitly parametrize the neighborhood of
the original realization with the aid of the minimal
parametrization.

Let 2
4 vecA(ξ )

vecB(ξ )
vecC(ξ )

3
5= θ (ξ ) = T̄(T)(pm0+Pmξ )

which implies that we can represent the impulse re-
sponse vectorg using the minimal parametrization:
g(ξ +δξ ),

g(θ (ξ +δξ )) = g(θ0)+g0(θ0)T̄(T)Pmδξ +o(jδξ j)
Since the parametrization is minimal any perturbation
in the parameter space yields a new transfer function
and hence a new impulse response vector, i.e.g(ξ +
δξ ) = g(ξ ) if and only if δξ = 0. This shows that the
range space ofg0(θ0) is at least of the same dimension
asδξ which concludes the proof. 2

Lemma 1 establishes that the rank of the Jacobian
matrix of the impulse response vectorg equals the
number of parameters in a minimal parametrization.
This property we now exploit when deriving a local
minimal parametrization.

For an arbitrary transfer function of McMillan degree
n pick a minimal realization(A;B;C). As before let2

4 vecA
vecB
vecC

3
5= θ0 (12)

Consider the affine parametrization given by (5) with
p0 = θ0 which means we define a local parametriza-
tion in the neighborhood of the realization(A;B;C).
A minimal parametrization hasn(m+ p) parameters
so in this case the dimension ofP is n(n+m+ p)�
n(m+ p). Any choiceP such that the productg0(θ0)P
has rankn(m+ p) will correspond to a valid minimal
parametrization.

A suitable matrixP defining the directions of the affine
parametrization can be determined in the following
way. Calculate the QR factorization of the Jacobian
matrix

g0(θ0) =
�

Q1 Q2

��R11 R12
0 0

�
(13)

whereR11 is of dimensionn(m+ p)�n(m+ p) since
g0(θ0) has rankn(m+ p) according to Lemma 1. A
good candidate forP is given by the right general-
ized inverse to the matrix

�
R11 R12

�
. A second QR-

factorization of the form�
R11 R12

�T
= Q̃R̃ (14)

gives us the final expression forP

P= Q̃R̃�T (15)

where (�)�T denotes matrix inverse and transpose.
SinceR̃ is triangular the matrix inverse is easily de-
termined.

An important property of the derived parametrization
is the following result.

Lemma 2.Consider a nominal state-space realiza-
tion (A;B;C) which is minimal and define a local
parametrization according to (5), (12) and whereP
is given by (13), (14) and (15). Letg(ξ ) denote the
2nmp long vectorized impulse response vector func-
tion parametrized by the local parametrization. Then

g0(ξ )Tg0(ξ )
��
ξ=0 = I



Proof: The chain rule gives

g0(ξ )
��
ξ=0 = g0(θ0)P= Q1

�
R11 R12

�
P=

Q1R̃TQ̃TP= Q1R̃TQ̃TQ̃R̃�T = Q1

since Q̃ has orthonormal columns. The proof is
concluded by noting thatQ1 also has orthonormal
columns. 2

The local parametrization as defined in Lemma 2 will
be namedOrthImp parametrization

Impulse criterion

This section discuss the use of the new parametriza-
tion when identifying a linear system from a measured
impulse response. The simple setup enables us to
clearly exemplify some properties of the parametriza-
tion. In Section 2.1 we point out some generalizations
for other identification settings.

Consider the non-linear least-squares identification
criterion

V(ξ ) =
N

∑
k=1

kgm(k)�g(k;ξ )k2
F (16)

where

g(k;ξ ) =C(ξ )A(ξ )k�1B(ξ ); k= 1;2; : : : (17)

is the impulse response of the parametrized model,
gm(k) is the measured impulse response of an un-
known system andk �kF is the Frobenius matrix norm
kXk2

F = tr(XTX).

If N = 2n we can use the vectorized representation of
the impulse response

V(ξ ) = kgm�g(ξ )k2 (18)

wheregm represents the vectorized measured impulse
response.

Theorem 1.Let (A;B;C) be a minimal realization
of a transfer function and consider the OrthImp
parametrization as defined in Lemma 2. LetN = 2n
and assumegm(k) is the impulse response from the
realization(A;B;C). Then

V 00(ξ )
��
ξ=0 = I (19)

where V 00(ξ ) denotes the Hessian of the criterion
V(ξ ).

Proof: The assumption thatgm(k) was generated by
(A;B;C) implies thatV(0) = 0 which in turn leads
to V 00(ξ )jξ=0 = [g0(ξ )Tg0(ξ )]

��
ξ=0 = I where the last

equality follows from Lemma 2. 2

The result shows that if(A;B;C) is chosen sufficiently
close to the true system then the Hessian will be al-
most diagonal. In a stochastic setting this also tells us
that the Fisher information matrix and the covariance
matrix of the parameter estimate will both also be
proportional to the identity matrix. Such a covariance
matrix implies that all parameters are independent of
each other and equally affected by the noise.

2.1 Generalizations

The methodology of defining the parametrization
based on the impulse response can be generalized to
arbitrary quantities which uniquely represents the sys-
tem. In this way a whole class of local parametriza-
tions can be derived. For example another local
parametrization can be defined suitable for the pre-
diction error method (PEM) (Ljung, 1999). Instead
of using the impulse responses the parametrization
is based on the sequence of prediction errors which
appears in the least-squares criterion. A more detailed
discussion of this is beyond the scope of this paper and
is part of ongoing work.

2.2 Reduced numerical complexity

In a previous paper a similar local parametrization,
OrthPar, was suggested (McKelvey and Helmersson,
1997). However, the calculation of the basisP for the
OrthPar parametrization requires the calculation of a
null-space of a matrix of sizen2�n(n+m+ p). The
new parametrization introduced in this paper requires
a calculation of the range space of a matrix only of
size(2nmp)�n(n+m+p). This requires significantly
less number of operations if the number of inputs and
outputs (mandp) are reasonably small and the system
ordern is large. Figure 1 illustrates the difference in
numerical complexity in computing the basisP for the
OrthPar and OrthImp parametrizations for a system
with 2 inputs and 2 outputs and varying state sizen.
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Fig. 1. The graph illustrates the number of float-
ing points operations required for calculating the
parametrization basisP for the OrthPar and the
new OrthImp parametrizations.

3. EXAMPLE

A numerical example of a multivariable identification
problem is considered which consists of estimating
a linear discrete time dynamical system from a mea-
sured impulse response. The system is determined by



minimizing the sum of squares of the difference be-
tween noisy impulse response data and the impulse
response of the parametrized system. Hence, the cri-
terion functionV(ξ ) in (16) is minimized with respect
to the parameter vectorξ and wheregm(k) is the noisy
impulse response of the true system andg(k;ξ ) is the
impulse response of the parametrized system. Note
that (16) is (generally) a non-quadratic function of
the parameters and a nonlinear optimization algorithm
must be employed to perform a local search for the
optimum.

The example is based on simulated data and illustrates
that the choice of parametrization can have a large im-
pact on the convergence properties of the local search.
For each data set four different parametrizations are
used when minimizing the criterion function (16).
The new OrthImp parametrization is compared with
both the classical observable canonical parametriza-
tion (Ljung, 1999, Appendix 4b), the tridiagonal
parametrization (McKelvey and Helmersson, 1996)
and the more recently proposed OrthPar parametriza-
tion (McKelvey and Helmersson, 1997). For the ob-
servable canonical form we select structural indices
such that the true transfer function is in the interior
of the set of realizable transfer functions.

3.1 Simulation setup

A range of different systems of increasing McMillan
degree is identified. The impulse response of the true
system of order 2M, g0(k), is generated from a system
with complex conjugate poles defined by

pk =
(0:1� i

p
1�0:12)

10

�
1+

4(k�1)
M�1

�

for k = 1; : : : ;M The zero configuration is generated
by using random values of the elements in the matrices
C andB. For each system order 2M, M = 1; : : : ;4, a
sampled impulse response of length 200 is generated
with a sampling interval of 0.1. The identification data
gm(k) is obtained by adding Gaussian white noise
with variance 10�4 to the generated impulse response.
The Gaussian distribution of the noise implies that the
model which minimizes the quadratic criterion (16) is
the maximum-likelihood estimate (Ljung, 1999).

3.2 Identification method and results

The non-linear least-squares criterion (16) is mini-
mized by iterative parametric optimization using the
method of Levenberg-Marquardt (Dennis and Schn-
abel, 1983). The MATLAB implementationlsqnon-
lin of the MATLAB Optimization Toolbox ver 2.1
(R12) is used. The minimization is terminated if the
criterion function decreases less than 10�6 between
two iterations or if more than 1000 criterion evalua-
tions has occurred.

The optimization algorithm is initiated with a param-
eter value derived from a perturbed system. The per-
turbation is constructed by starting from a balanced

realization of the true system and perturbing all matrix
elements with zero mean Gaussian random noise with
variance 4� 10�4. The perturbed balanced form is
converted to the form associated with the particular
parametrization which then defines the initial point in
the parameter space from where the optimization is
started.

For each model order, 100 different random initial pa-
rameter points are generated and the criterion function
(16) is minimized using the four different parametriza-
tions. The quality of the estimated model is deter-
mined by calculating the model error as

Em(ĝ) =
1

Npm

N

∑
k=1

kg0(k)� ĝ(k)k2
F (20)

whereg0 is the true noise free impulse response and
ĝ is the impulse response of the identified model.
Figure 2 reports the results of the simulations aver-
aged over the 100 different initializations. For model
order 2 the performance of all parametrizations are
comparable . For model order 4 OrthImp and OrthPar
have best performance while the Observable canoni-
cal and the Compact tridiagonal ones are comparable
when comparing model error. However the Observ-
able parametrization requires significantly more func-
tion evaluations. It might be expected that the tridiag-
onal parametrization which is non-minimal should re-
quire more calculations but instead it is the observable
canonical form which requires most effort. For model
orders 6 and 8 the observable canonical parametriza-
tion fails to converge for all 100 optimizations. A
possible reason is that the optimization problem for
that parametrization has become so ill-conditioned so
the numerical optimization method fails completely to
converge within the 1000 evaluation limit. The other
three parametrization performs much better. The new
OrthImp and the OrthPar parametrization have almost
identical results while the tridiagonal parametrization
requires more evaluations. The additional advantage
of the new OrthImp parametrization is that the calcula-
tion of the parametrization basisP requires less float-
ing point operations than the OrthPar parametrization.

4. CONCLUSIONS

A new local minimal parametrization is presented
which is based on parametrization of the impulse
response with a basis such that the Jacobian of the
finite impulse response of length 2n is an orthonor-
mal matrix. Consequently it can be argued that the
parametrization is locally optimal. Furthermore, if the
parametrization is used in a least-squares impulse re-
sponse criterion then, under certain conditions, the
Hessian of the criterion is equal to the identity ma-
trix. The parametrization is closely related to the re-
cent OrthPar parametrization and in an example shows
similar good convergence performance for high order
systems. Furthermore the new parametrization can be
calculated with less floating point operations than Or-
thPar which is important when dealing with models of
high order.
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Fig. 2. Simulation results based on averaging over
100 optimizations from randomly perturbed ini-
tial models. Sub-figure (a) shows the mean value
of the resulting model errorEm. Sub-figure (b)
presents the average number of evaluations of
the functionV(ξ ) the Levenberg-Marquardt op-
timization routine used.
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