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Abstract: In this paper, the speed control problem of induction motors is considered
based on a semi-current-fed model considering the LuGre dynamic friction model.
A double-observer structure is used to estimate different nonlinear effects of the
immeasurable friction state. For the semi-current-fed model, either a bounded
current-loop control force (stator voltage) and/or a finite integral of current tracking
error are assumed which relaxes the traditional strict assumption of an ideal current-
loop. In practical experiments, it is assumed that the rotor resistance, torque load,
and friction parameters are unknown. Copyright (© 2002 IFAC
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1. INTRODUCTION

The induction motor (IM) driven by current con-
trol inverters has high-gain current loops so that
the stator currents may be assumed to be the
control inputs. The feasibility of frequency, mag-
nitude, and phase control of the stator currents
makes the ideal current-fed IM especially suitable
for torque control applications (Trzynadlowski,
1994). If the stator currents, instead of stator
voltages, are regarded as the control inputs, the
dynamic model of the IM can be reduced to a
third order model. Based on the reduced-model,
the control of IMs become more straightforward.
An attractive research problem in current-fed IM
is the design of an output feedback algorithm for
speed and flux regulation with unknown time-
varying rotor resistance and torque load. In the
typical control of IMs, a rotor flux observer and a
rotor resistance estimator are needed. To cope
with the complex bilinear estimation problem,
many schemes have been proposed (Marino, et al.,
1996).
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In this paper, the proposed semi-current-fed
model is more practical than the typical current-
fed model. Here we either assume the current-
loop maintains the stator voltage upper bounded
and/or that the L1 norm of the current tracking
error is bounded. This approach relaxes the as-
sumption of an ideal current-loop needed in the
previous works. We also consider dynamic fric-
tion effect presented by a LuGre model (Canudas
de Wit, et al., 1995). Hence, the adaptive scheme
addressed in (Tan and Kanellakopoulos, 1999) is
extended to handle non-uniform parametric vari-
ations of the friction force. A nonlinear controller
with adaptive friction compensation is proposed
to achieve tracking objectives with information
of only the rotor speed, stator voltage and cur-
rent while rotor resistance and torque load are un-
known. A set of virtual desired variables (VDV) is
utilized and determined in a straightforward man-
ner once considering the principals of vector con-
trol — the intention of achieving a well performing
current regulator and exact field orientation. To
avoid using rotor flux feedback, an auxiliary sig-
nal relates the rotor flux error to the measurable
signals. The proposed adaptive controller is then



proven to achieve asymptotic speed tracking. In
addition, flux tracking is achieved under the con-
dition of persistent excitation.

2. PROBLEM FORMULATION

2.1 Dynamical Model of Induction Motors with
Considering Friction

The model of a three-phase IM is represented
by (Tan and Kanellakopoulos, 1999; Bose, et al.,
1986):

Bi+@i+ON = £V, (1)
A—OX— ’" ’“1 =0 (2)

Jo = T-Ti—F (3

T = 22T (4)

where & = &2 4 LR , 0 = wly — %Ig,
8=k i —[Zsa iso] Ty A =[Ara Arp]T, Vi = [Vig
VT, Io = diag{1, 1}, Jo = [ (1) *01 } . Let

(isas @sb)s (Ara, Arp) and w denote the components
of the stator current, rotor flux, and rotor speed,
respectively. The (Via, Vip) denote the stator
voltages; Rs, R, Ls, L, and L,, are the stator re-
sistance, rotor resistance, stator inductance, rotor
inductance, and mutual inductance, respectively;
parameter 0 = L, — L2 /L,; J, T), F are the
mechanical inertia, torque load, friction force, re-
spectively; and T is a scalar function representing
the electromechanical coupling torque expressed
as: T = —ZLL (Araish — Arbisa), where n, denotes
one and a half the pole pair number. Further-
more, the friction force F' is modeled by the Lu-
Gre friction model (Canudas de Wit, et al., 1995)
with friction force variations:

£ = w-2ths (5)
F = UoZ—i—UlE + oaw, (6)

where z is the friction state that physically stands
for the average deflection of the bristles between
two contact surfaces. The friction force param-
eters oo, 01, 02 can be physically explained as
the stiffness of bristles, damping coefficient, and
viscous coefficient, respectively. In our design
we assume that these three parameters are un-
known positive constants. A parameterization of
g(w) = Fo + (Fs — Fo) ¢~ (%) has been pro-
posed to describe the Stribeck effect (Canudas de
Wit, et al., 1995), where F¢ is the Coulomb fric-
tion value, Fg is the value of the stiction force,
and wy is the Stribeck velocity.

2.2 Problem Formulation

In current-fed IM systems, high-gain PI current
loops are imposed to regulate the stator currents.
The concise block diagram of a practical current-
fed IM system is shown in Fig. 1. The block dia-
gram illustrates that the stator currents (isq, 4sp)
are forced to track the reference signals (i%,,4%,)
by virtue of the PI control input defined as fol-
lows:

‘/;a:
Veo =

Kai fg’{sadt (7)
Ky, f[f;frsbdt (8)

7Kapzsa -

_Kbpisb -

where 25@ =lsq — brg, ;Sb = igp — 15y, and the posi-
tive gains Kop, Kqi, Kpp, Kp; are properly chosen
such that the current loop has satisfactory per-
formance. Therefore, the dynamics of the stator
currents (1) can be neglected and the reference
values of the stator are considered as the con-
trol inputs. In other words, we replace (isq, isp)
with (¢¥,,4%). Finally, the reduced-order model
of the IM is expressed by (2) and (3). However,
the assumption of an ideal current loop control in
practical situations is not easily satisfied. This is
due to current loop uncertainties and saturation
of high gain control. To cope with this problem, a
semi-current-fed concept is stated in the following
assumptions:

A.1: By proper choice of PI gains in (7) and (8),
the current loop performs well such that Vj is
bounded, i.e., V4 € Lo,

Since (7) and (8) is viewed here as a stable filter
driven by V, we have i4,, i € Lo according to
A.1. A stronger assumption is made as follows:

A.1’: In addition to A.1, the current tracking er-
rors are assumed to be a finite integrable function,
i.e., Gsq, Tsp € Loo N L1.

Under the sense of A.1 or A.1’, we call this cur-
rent controlled IM as a semi-current-fed IM. This
terminology arises from the fact that A.1 and A.1’
relaxes the assumption iy, = i},, s = 15, Which
has been needed in typical current-fed IM con-
trol. Therefore the speed control design based on
a semi-current-fed concept is a step closer to prac-
tical situations. Before the controller synthesis,
some other assumptions are given:

A.2 The voltages and currents of stator, along
with the velocity of rotor are considered to be
measurable.

A.3 Moment of inertia J and the load torque T}
are unknown constant.

A.4 The parameters, L,,, L., Ry, are known con-
stants whereas R, is unknown.

A.5 The desired speed wy is a smooth and



bounded function.

3. ADAPTIVE SPEED CONTROL DESIGN
8.1 Mechanical Loop Control and VDV-Synthesis

First, let us consider the mechanical dynamics (3).
The speed tracking error @ = w — wy. Therefore,
(3) is rewritten in terms of @ as follows:

J& + Bo
= T—-Tyg+Ty—T — Jwy
—Bwg — 09z + Ulg(%%z (9)

where B = o1 + 02 > 0. As we know, the fric-
tion state z is not measurable. In order to cope
with different nonlinearities of z that are present
in the system dynamics, we employ two nonlin-
ear observers to estimate the immeasurable state
z and replace z with its estimates Zp and Zi, of
which the dynamics are given by

Lo — w— B3 b, B =w— L+ (10)
where (g, t1 are compensation terms that are yet
to be determined. The estimation error 2y = z2—2p
and z; = z — 2. In light of this, (9) is further
written as:

Jo+ (B+ky)@
= T-Tg+Ty—-YO0 +k,©
—o0 (Zo + Z0) + 01% (z1+7z1) (11)

where Ty denotes the desired torque which pro-
duces the desired speed; k,, is a adjustable damp-
ing ratio; Y =[1 wq wy] is a regression matrix;
and the parameter vector 8 = [T} J B]T. The
damping term k,o plays a dominant role on the
transient response for speed tracking. For speed
tracking control, the desired torque is naturally
defined to be

Ti=Y0 — k& + G20 — g'(“j) G171 (12)
where 8 is the estimated vector of 8. Therefore
the following error dynamics is obtained:

Jo+ (B+ky)@
= T—Td—Yé—Uogo—aogo

“+o01 z1 +0'1 (13)

e ek
with the estimation error 0 = 0-0. If the up-
date laws for 8, g, and o; are properly chosen
and (T — Ty), Zo, and Zz; are driven to zero, the
rotor speed will converge to the desired value at
a desired rate based on a suitably chosen k. To
this end, the speed tracking control problem has
been reformulated into the torque tracking prob-

lem. In other words, the remainder of the control

design is to generate a torque T to track the de-
sired torque Ty while all internal signals are main-
tained bounded. Consider the cascaded subsys-
tems (1) and (2), the vector control problem is
to design a desired current i* and flux A4 inde-
pendently such that the electrical subsystem can
generate the desired torque T, where A4 is a vir-
tual desired variable for A to achieve. From the
above and torque equation (4), we synthesize Ty
by

Ty ="2lmi T I, 0 (14)

Once i and A converge to i* and A4 respectively,
then T converges to Ty. This can be a way to
design V, for a full model. In contrast, based
on the semi-current-fed concept, the convergence
of i to i* depends on whether the current loop
controller satisfies the assumptions A.1 or A.1.
Consequently, the torque tracking is reformulated
into designing i* and A4 such that A — Ay while
satisfying (14). In light of vector control anal-
ysis, we impose some conditions on the virtual
desired variables i* and A;. First, we note that
the optimal torque will be obtained by setting
the magnitude of magnetic flux to be a constant
value. Therefore to achieve this property, we let
[IAdll = ¢, where c is an given constant. This fur-
ther implies that the virtual desired flux in the
stator frame is Ay = (ccos(p) csin(p)), where
p (t) denotes the angle between the stator frame
and excitation frame which is to be determined
later. In light of the above, Ay and i* are con-
strained by the following conditions: C.1 Ay is
kept constant by letting || Ag4|| = ¢; C.2 Ay and i*
satisfy (14). As a result, the control objective is
to design i* such that A — Ay, where A, is con-
strained by C.1 and C.2.

3.2 Realization of VDV-Synthesis

Since the rotor flux is not measurable, we omit
the use of flux sensors and reconstruct the flux
signals without using an observer. From (1) and
(2), we have: o

Bi+A=n (15)

where 1 = ALLH + —LV is a first order filter.
Integrating (15), the ﬂux signals

A=n-Bi+A (16)

where A is an unknown integration constant vec-
tor dependent on initial conditions. In virtue of
(16), the reconstructed flux signals X = n—Bi+A,
where A is an estimated signal of A and is to
be determined by the adaptive mechanism. The
VDV-synthesis algorithm is given in the following:

Step 1 First, change the original flux tracking
into the tracking of reconstructed flux A to Ag4.



Define the tracking error of reconstructed flux,
error of estimated rotor resistance, and error of
estimated integration constant, respectively, as
A=A—-XAg, R = R — R, and A = A-A|
where R, is the estimated rotor resistance. From
(2), we obtain

A = A+A-A
R, L,R, ~ o~
= kx| A+ R,
< L, L, A) + ¢r
= Lmox
+WJ2A—B+L—RT1+£)\—C (17)
where 1 = i — i B=B- ]§, where B is

the estimated signal of B =&=A; ky > 0; ¢ is
an auxiliary signal determined later; and &, =
(I — LoD Ag+ Lalle fy X B+ 2 A+ L R+

A—Xi+s, ¢, =it — I+ LA+ Lupy X
Since &, is a perturbatlon terrn in (17) set E/\ =0

to determine i* and p. From definition of Ay4, we
obtain

i = L—L%<(p W) IsAg + B — A—c)

R
A (A Ad> 39 (18)

where the relation Ay = pJoAq (c.f., C.1) has been
used.

Step 2 Substitute (18) into (14) (i.e., satisfying
C.2). The result of the substitution along with
C.1 is used to determine the angle p (t) where

~ ~T
p o= wtd (RT (f— + La X o
—~ BY T
+L%ATJ2)\d) n (A + ng) J2>\d(>9)

Therefore i* can be rewritten in terms of Ty :

- 1
i = ﬁ <12 + ;w.]z) Ad
L ~ PS ~ 1 ~
L (BoA—c) - A- A,
(20)
where 1) = (Lmk)\;\—&-K)TJz/\d—i-Lr(% + %(K—i—

g_ﬁ)TJQAd).

3.8 Adaptive Mechanism

Based on the control law (20), the error dynamics
(13) and (17) are further expressed as
Jo+ (B+ky)@
= LLL:LE (iTsz + iTJQ,:& —‘r?TJzAd)
|w]

~YO0 — 00z — 0920 + 01 ﬁ'z} + 01

|w] 2
g(w)

(21)

>

= (UJJQ*—LI 7-“]{3)\12)A+R ¢r
+wJ2A - B+ ffﬂer - (22)

where (4) and (14) have been used. If the current
error (i —i*) is the input of the PI current con-
troller (7) and (8), the semi-current-fed concept is
achieved. We now show that the tracking errors
w and A are convergent once update laws for R,
0, A, B, 09, and 0, are suitably chosen. Consider
a Lyapunov function candidate

~T ~
Vo= LaJo®+4a8 T7'0+ 4 (N X407 B2

+ATT;'A + BT 1B 4 ;152

+75'07) + 20075 + 30171 (23)

where a is an arbitrary positive constant; and
71, Ty = T3, T3 = T3, Ty = T, 75, 7,
are positive definite adaptation gains. The time
derivative of (23) is V = aJow + ozéTI‘Zlé +
X /\+71 'R Rr—i—ATI‘ 1A+BTI‘ B+00Z0%0+
012121 + 75 0000 + Yo 15,51. To render V< 0,
the update law of RT is chosen as:

j’%r - { ~T O’
’YlA d)rv
(24)

where Ry denotes a lower bound of the unknown
rotor resistance R The update law for R

satlsﬁes R, (v R + >\ . = Rr’h (Rr -

71)\ b, ) < 0, since R, > Ry. The other update
laws for A B and 8 are

if B, = Roand X ¢, <0

otherwise

A = 1o (*pmaafitesiX)  (25)
B = -T3\ 0=-aI,Y" (26)
Go = —7Ysad%, 31:7604&%21 (27)

Accordingly the observer compensation terms are
defined by:

Lo = —aw, 11 = aw (28)

g(w)
where the auxiliary signal ¢ is given as

¢ =2bntta gy (29)
As a result, we arrive with the following inequality

—a (B4 k)@ — E= (14 Lok X A

- w
—‘r%r:"lT[ omp.]z)\d R, I, ] |: X :|
Zo —o1gy2t (30)

el
70 9(w)

9(w)

Theorem: Consider a semi-current-fed IM of
which the friction force variation is characterized



by the friction model in (5), (6). The control law
(20) is composed of the dual observer structure
(10), (28) for the friction force, the desired torque
Ty in (12), the auxiliary signal ¢ in (29), and the
parameter update laws (25)~(27). If the control
gains k,, k), ¢ and « are suitably chosen, the
closed-loop control system has the following prop-
erties:

(a) If A.1~A.5 are satisfied, all signals in the
closed-loop system are bounded. Moreover, the
tracking errors & and A with respect to the
current error i is finite-gain Lo stable, i.e.,

12
fot Ih(r)|?dr < e + e fot HI(T)H dr for h = [@
XT}T and some positive constants €; and €.

(b) If A.1’, A.2~A.5 are satisfied, then the track-
ing errors @ and A asymptotically converge to zero
as t — oo.

Proof. The proof is omitted due to lack of
space. |

Here we emphasize that in our proposed
methodology, no PE condition is needed. Now
we analyze the rotor flux tracking error (A — Ay)
under assumption that the projection of update

law (24) does not occur. In other words, R, =

~T
v ¢,. The overall error dynamics (21) and (22)
is rewritten as

AX =P ()X +S()i (31)
~T _ o~ e o~ ~T
where X = [0 A %2 21 R, AT BT 0 55 51]7,

A = block-diag{ald, 14, Is, alz, I}, and T' =
block-diag {1, T2, T's, T4, 5, Y6 }-

[ Pi1 P12 Piz  Pig |
Pgy1  Pay  Ppz  Poy ‘ wT
P = P31 P3z P33z Pgy |
P41 Pgz  Py3  Pyy J‘r ’
L -rw | 0
r aL,n T T
QLmNp
T AgJa
— L, R
S = —%TT'IQ y
0
wT = [ Wi Wip Wiz Wiy Wis Wig ]
W21 W2z  Wp3 Wpy Wps Wog |0
Lo .
where P;; = —a(B+k,), Poy = fO‘L—TnPng,
_ _ w _ aLpng T
P31 = a, Py = —g(ﬂja, Py = =217 Jy,
_ R _
Py = (WJ27ff(l+Lmk)\)) I, Pz = 0,
_ _ _ v
Py = 0, P13 = —aog, Pz = 0, P33 = — =5,

Py =0, Py =0, Py = g(%%oéffl, Py, = 0,
P33y =0, Py = —g(%j, and W11 =0, Wy = ¢,
Wi, = 2522iT)y, Wy = wly, Wis = 0,
Wy = —Iz, Wiy = —a¥Y, Wy = 0, W5 =

—azy, Wos =0, Wig = %0‘21, Wye = 0.

Corollary Consider a semi-current-fed IM, where
A.1 is sustained. If the matrix W (¢) satisfies the
persistent excitation condition, that is, there exist
two positive constants v and p such that

t+v
/ W (r)WT (r)dr > pul >0, V¢ >0, (32)
t

the equilibrium point X = 0 of system (31) is
uniformly asymptotically stable. Furthermore,
asymptotic flux tracking will be achieved, that is,
lims 0o (A — Ag) =0.

Proof. The proof is omitted due to lack of
space. [ |

From above, optimal torque will be sustained if
PE is satisfied.

4. EXPERIMENTAL RESULTS

The experimental setup is shown in Fig. 2.
The IM parameters expressed in per unit val-
ues: rated output power = 0.4 kw; pole pair
number = 3; rated V; = 120 V; rated I, = 3.4
A; rated T = 2.54; rated w = 1500 rpm; nom-
inal value of J = 0.001 N-m-s; R; = 2.85(;
R, = 4.0Q; Ls = 0.19667 H; L. = 0.19667 H;
L,, = 0.1886 H. We first consider speed track-
ing of wg = 30sin 27t rad/sec. The control pa-
rameters are chosen as: k, = —310, k; = —350,
k, = 1.5, kx = 0.2 and o = 0.055. Update gains
are set as I'y = 5.5, 'y = diag {0.8, 0.8}, T's =
diag{0.2,0.2}, Ty = diag{0.1,6e~7, 0.0007}.
When the friction compensation is activated, the
update gains for the compensation are set as:
r, = dz’ag{O.l, 6e7, 0.025}7 I's =2 TIg =
0.82. The reference signal and speed response
with friction force is shown in Fig. 3(a), and
with friction compensation is shown in Fig. 3(b).
For the case with friction compensation, the re-
sponse for the speed tracking error is shown in
Fig 3(c); the double-observer estimation error Zp,
z1 are shown in Fig. 3(d) and Fig. 3(e), re-
spectively; the input voltage and current for one
phase are shown in Fig. 3(f) and Fig. 3(g) re-
spectively; and estimated }A%r is shown in Fig.
3(h). Secondly consider speed regulation of wg =
30 rad/sec. The control parameters are cho-
sen as: k, = —250, k; = —350, k, = 1.5,
kx = 0.2 and o = 0.055. Update gains are
set as I'y = 3.5, Ty = diag{0.8,0.8}, I's =
diag{0.2, 0.2}, Ty = diag{0.1, 6e~", 0.0046}.
When the friction compensation is activated, the
update gains for the compensation are set as:
Ty = diag {0.17 6e 7, 0.0022}7 I's =10, T's =
0.82. The reference signal and speed response
with friction force is shown in Fig. 4(a), and with



friction compensation is shown in Fig. 4(b). The
speed tracking error for (b) is shown in Fig 4(c).

5. CONCLUSIONS

In this paper, we consider the speed tracking
control with friction compensation for an IM.
The IM is modeled by a semi-current-fed model
whereas the frictional force is by a LuGre dynamic
model. From the experimental results, we can see
that when considering friction compensation, the
performance is greatly improved. Results with
smaller overshoot, fasten transient behavior, and
nearly zero steady-state error are obtained.
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