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Abstract: This paper covers the design of an Evolutionary Algorithm (EA), which should be
able to synthesize a multi-objectiveH2/H∞ controller. It will be shown how a system can
be expressed as Matrix Inequalities (MI) and these will then be used in the design of the EA.
The main objective is to use EAs to examine whether a multi-objectiveH2/H∞ controller is
feasible, and if so, how the optimal multi-objective controller might be found.
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1. INTRODUCTION

Over time many complicated control problems have
successfully been translated into analytical or other-
wise numerically solvable ones. However, a combina-
tion of robust(H∞) and optimal(H2) control with-
out imposing restrictions cannot be solved analytically
and has not yet been solved in a manner that provided
useful results. A successful combination of robust and
optimal control would result in a controller structure
that contains the same ruggedness as a robust con-
troller and the performance of an optimal controller.
Such a controller structure would provide control en-
gineers with a vast amount of design possibilities.

Controller synthesis for the multi-objectiveH2/H∞
problem has previously been attempted (Scherer,
1995). By specifying a bound forH∞ it was possible,
when the problem was feasible, to synthesize a near
optimal controller using convex optimization. How-
ever, the need for specifying a bound forH∞ made
the approach inefficient with regard to automatically
minimizing this bound onH∞. In (Khargonekar and
Rotea, 1991) the multi-objectiveH2/H∞ problem
was converted into a more restrictive mixedH2/H∞
problem. Using state-feedback the problem could be
converted into a convex optimization problem and
solved analytically. Also, in (Scherer and Weiland,
2000) the multi-objectiveH2/H∞ problem was con-

verted into an analytically solvable mixedH2/H∞
problem using Linear Matrix Inequalities (LMI). Con-
verting the multi-objective problem into a mixed prob-
lem resulted in applying restrictive constraints. These
constraints resulted in far from optimal solutions to the
multi-objective controller problem.

The theory of evolution is well known in the field of
biology. How evolution has proved successful in na-
ture, have inspired computer scientists to create intelli-
gent algorithms and programs based on the principles
of evolution. This evolutionary approach requires a
large amount of computations but is also both pow-
erful and successful. This powerful method opens up
for new approaches to previously unsolved or flawed
solutions to existing problems, and the evolutionary
approach has already been used for a variety of prob-
lems within control engineering (Eibenet al., 1999; Li
et al., 1996; Yanget al., 1997). Evolutionary Algo-
rithms (EA) have two major advantages compared to
other hill-climbing techniques. First of all they are ro-
bust, which means they do not necessarily get stuck at
local minima/maxima. Second of all they operate with
several solutions at the same time, known as parallel
computing, which enables them to cover a search area
faster than other numerical methods. Using an EA in
combination with a Matrix Inequality (MI) formula-
tion of the multi-objectiveH2/H∞ problem might
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result in finding a near optimal controller that can
automatically minimize both theH2 andH∞ norms.

TheH2 and theH∞ problem will be reformulated into
MIs. These MIs will then be combined and readied for
implementation as part of an EA. The EA will then
be designed to automatically synthesize a dynamic
discrete-time multi-objectiveH2/H∞ controller.

Section 2 describes how a given system can be de-
scribed using MI formulation and how this MI formu-
lation could be written in a way that could easily be
implemented in an EA. In section 3 an EA is devel-
oped and a description of how the MI constraints can
be implemented is given. It is also discussed how the
internal workings of the EA, such as the individuals,
the fitness function and the crossover and mutation op-
erators, can be designed. In section 4 the experiences
obtained by testing the developed EA are presented
and discussed.

2. MATRIX INEQUALITIES FORH2 AND H∞

The discrete-time system used for this study is given
by equation (1).
x(t+ 1)
z1(t)
z2(t)
y(t)

 =


A B1 B2 B
C1 D11 D12 E1

C2 D21 D22 E2

C F1 F2 G



x(t)
w1(t)
w2(t)
u(t)

 (1)

whereA ∈ Rn×n, D11 ∈ Rp1×m1 , D22 ∈ Rp2×m2

andG ∈ Rq×l. First some requirements for the system
must be met (Gahinet and Apkarian, 1994).(A,B)
must be stabilizable and(C,A) must be detectable.
SettingG = 0 is no requirement but will be assumed
to simplify calculations without any loss of generality.
Then, given any discrete real-rational dynamic con-
troller K(z) with the realization

K(z) = DK + CK(zI−AK)−1BK (2)

with AK ∈ Rk×k, the closed-loop transfer function
fromwi(t) to zi(t) is found as

T ci = Dci + Cci(zI−Ac)−1Bc i = 1, 2 (3)

wherei = 1 corresponds to the closed-loop transfer
function,T c1 , fromw1(t) to z1(t) andi = 2 is the
correspondingT c2 from w2(t) to z2(t). The multi-
objectiveH2/H∞ controller will be found so that the
H2 norm is minimized forT c1 and theH∞ norm is
minimized forT c2 . The closed loop expressions are
given as

Ac =
[
A + BDKC BCK

BKC AK

]
,

Bc =
[[

B1 B2

]
+ BDK

[
F1 F2

]
BK

[
F1 F2

] ]
, (4)

Cci =
[
Ci + EiDKC EiCK

]
, i = 1, 2

Dci =
[[

Di1 Di2

]
+ EiDK

[
F1 F2

]]
. i = 1, 2

Gathering the control parameters into one single vari-
able

Θ =
[
AK BK

CK DK

]
∈ R(n+k)×(n+k) (5)

and introducing the shorthands

A0 =
[
A 0
0 0k×k

]
, B0 =

[
B1 B2

0 0

]
,

C0i =
[
Ci 0

]
, i = 1, 2

D0i =
[
Di1 Di2

]
, i = 1, 2

B =
[

0 B
Ik×k 0

]
, C =

[
0 Ik×k
C 0

]
, (6)

Ei =
[
0 Ei

]
, i = 1, 2

F =
[

0 0
F1 F2

]
.

results in writing the closed-loop matrices as

Ac = A0 +BΘC,
Bc = B0 +BΘF , (7)

Cci = C0i + EiΘC, i = 1, 2
Dci = D0i + EiΘF . i = 1, 2

At this point an introduction of the projection lemma
(Scherer and Weiland, 2000) is useful.

Lemma 1.For arbitraryP ,Q and a symmetricΨ, the
MI

QTΘP +PTΘTQ+ Ψ < 0 (8)

in the unstructuredΘ has a solution if and only if

Px = 0 orQx = 0 ⇒ xTΨx < 0 or x = 0.
(9)

If WP and WQ denote arbitrary matrices whose
columns form a basis of the nullspaces ofP and
Q respectively, denotedKer(P) andKer(Q), (9) is
equivalent to

WT
PΨWP and WT

QΨWQ. (10)

From (Gahinet and Apkarian, 1994) the MI forH2

optimization is given by−X2 Ac 0
AT
c −X−1

2 CT
c1

0 Cc1 −I

 < 0 (11)

where

X2 = XT
2 > 0 (12)

and the optimal solution is given by minimizing

tr
(
BT

0 X−1
2 B0

)
< γ2

2 (13)

Using the shorthand of (7), the inequality (11) can be
written withX2 andΘ grouped terms as−X2 A0 0

AT
0 X−1

2 CT
01

0 C01 −I

+

B0
E1

Θ
[
0 C 0

]

+

 0
CT
0

ΘT
[
BT 0 ET1

]
< 0

(14)



Use of the projection lemma further states that (14) is
solvable if and only if

WT
P

−X2 A0 0
AT

0 X−1
2 CT

01

0 C01 −I

WP < 0, (15)

WT
Q

−X2 A0 0
AT

0 X−1
2 CT

01

0 C01 −I

WQ < 0, (16)

where

WP =

 0 I 0
WP1 0 0

0 0 I

 ,
WQ =

WQ1 0
0 I

WQ2 0

 , (17)

and with

Im
[
WP1

]
= Ker

[
C
]
,

Im
[
WQ1

WQ2

]
= Ker

[
BT ET1

]
. (18)

Using the Schur complement (Scherer and Weiland,
2000) on (15) and (16) the conditions for a solution
to (14) can be written as

−WT
P1

X−1
2 WP1 + WT

P1
CT

01C01WP1

+ (A0WP1)TX−1
2 (A0WP1) < 0 (19)

and

(AT
0 WQ1+CT

01WQ2)TX2(AT
0 WQ1+CT

01WQ2)

−WT
Q1

X2WQ1 −WT
Q2

WQ2 < 0 (20)

Thus, by finding anX2 and aΘ that solves equa-
tions (14), (19) and (20) and minimizing (13), theH2

norm for the transfer function,T c1 , can be minimized.

Similarly forH∞ a controller that fulfills the MI
−X−1

∞ Ac Bc 0
AT
c −X∞ 0 CT

c2

BT
c 0 −γ∞I DT

c2
0 Cc2 Dc2 −γ∞I

 < 0 (21)

where

X∞ = XT
∞ > 0 (22)

is calledγ-suboptimal (Gahinet and Apkarian, 1994),
and by minimizingγ∞ the optimal controller can be
found.

Writing theH∞ MI with X∞ andΘ grouped terms
yields


−X−1

∞ A0 B0 0
AT

0 −X∞ 0 CT
02

BT
0 0 −γ∞I DT

02

0 C02 D02 −γ∞I



+


B
0
0
E2

Θ
[
0 C F 0

]

+


0
CT

FT
0

ΘT
[
BT 0 0 ET2

]
< 0 (23)

Again use of the projection lemma states that (23) is
solvable if and only if

VT
P


−X−1

∞ A0 B0 0
AT

0 −X∞ 0 CT
02

BT
0 0 −γ∞I DT

02

0 C02 D02 −γ∞I

VP < 0, (24)

VT
Q


−X−1

∞ A0 B0 0
AT

0 −X∞ 0 CT
02

BT
0 0 −γ∞I DT

02

0 C02 D02 −γ∞I

VQ < 0, (25)

where

VP =


0 I 0

VP1 0 0
VP2 0 0

0 0 I

 ,

VQ =


VQ1 0 0

0 I 0
0 0 I

VQ2 0 0

 , (26)

and with

Im
[
VP1

VP2

]
= Ker

[
C F

]
,

Im
[
VQ1

VQ2

]
= Ker

[
BT ET2

]
. (27)

The use of Schur complement on (24) and (25) yields

γ−1
∞ (C02VP1 + D02VP2)T (C02VP1 + D02VP2)

+ (A0VP1 + B0VP2)TX∞(A0VP1 + B0VP2)

−VT
P1

X∞VP1 − γ∞VT
P2

VP2 < 0 (28)

and

γ−1
∞ (BT

0 VQ1 + DT
02VQ2)T (BT

0 VQ1 + DT
02VQ2)

+ (AT
0 VQ1 +CT

02VQ2)TX−1
∞ (AT

0 VQ1 +CT
02VQ2)

−VT
Q1

X−1
∞ VQ1 − γ∞VT

Q2
VQ2 < 0 (29)

In short it will be possible to synthesize a dynamic
controller for the multi-objectiveH2/H∞ problem if
the matricesX2,X∞ and Θ that fulfills the MIs in
equations (14), (19), (20), (23), (28) and (29) can be
found. The multi-objectiveH2/H∞ controller would
then be given byΘ. Furthermore, by minimizingγ2

in (13) andγ∞ in (23), (28) and (29) the optimal
controller can be found.



3. EVOLUTIONARY ALGORITHM

The purpose of the EA is to search for the matrices
X2, X∞ andΘ that solve the MIs. By also minimiz-
ing γ2 andγ∞, the optimal controllerΘ can be found.
The attempt by (Scherer and Weiland, 2000) to syn-
thesize a mixedH2/H∞ controller using LMIs, used
the very restrictive constraint of settingX2 = X∞,
which is a condition for changing MIs into the analyt-
ically solvable LMIs. An advantage of using EAs to
solve the multi-objective problem and not use analyt-
ical methods, is that the inverse ofX2 andX∞ need
no special considerations. Analytical methods would
have required a reformulation of the problem before a
solution could be found.

BothX2 andX∞ are subject to the constraints of (12)
and (22) respectively, which means that both matrices
must be symmetric and positive definite. To obtain
symmetric positive definite matrices the expression

X = MTM (30)

is used. By ensuring thatM is real and nonsingular,
the resultingX will be real, symmetric and positive
definite. So, by letting the EA search for the real
nonsingular matricesM2 and M∞ and using equa-
tion (30), the implementation of the EA can be less
restrictive with regard to the search domain when find-
ing the matricesX2 andX∞. However, formula (30)
is ambiguous and will for matricesM and−M pro-
duce the sameX. Thus, in order to avoid ambiguity
the constraint

det(M) > 0 (31)

should be implemented. MatricesM, that do not meet
the constraint in (31) can, however, easily be con-
formed to meet the constraint by multiplication with
−1. Since there are no constraints onΘ, no special
considerations have to met for this matrix when de-
signing the EA.

3.1 Individuals

Before designing the fitness function it is necessary to
determine how the matricesM2, M∞ andΘ should
be combined. Having a separate population for each
matrix type M2, M∞, and Θ and determining a
fitness value for each of the possible combinations
would be infeasible. The number of fitness evaluations
in each generation would then depend exponentially
on the sizes of the populations. To avoid such a high
number of calculations, that would considerably de-
crease performance of the EA, it would be necessary
to limit the population sizes, thus, also limiting the
search space covered by the EA.

By choosing an individual to consist of a combination
of M2, M∞ andΘ, such that one matrixM2 is com-
bined with only one matrixM∞ and one matrixΘ,
the number of fitness evaluations in each generation

will not be exponential but will equal the population
size. The population size can then be chosen high,
which will ensure that the EA will cover a wide search
space.

The drawback of using the above mentioned combi-
nation ofM2, M∞ andΘ into a single individual is
that the possibility of losing matrices that, combined
with other matrices, would fulfill the MIs, is high. A
matrix, M2, in a specific individual is dependent on
the other matrices,M∞ andΘ, in that individual in
order to receive a good fitness. This means that one
ill fit matrix and two very fit matrices in an individual
will result in a poor fitness value for that individual.
However, the drawback can be reduced and this will
be described later in section 3.3.

3.2 Fitness Function

The fitness function can be defined in many different
ways. In this paper the fitness function is chosen to be
expressed as adjusted fitness (Koza, 1994). Adjusted
fitness is written in the form

Fa =
1

1 + f
(32)

wheref ≥ 0 is sought minimized. This results in a
maximum value of1 for the adjusted fitness function,
Fa. The reason for choosing adjusted fitness is that,
whenf approaches0, the importance of small changes
is exaggerated. So, as the population improves, greater
emphasis is placed on small differences, thus, making
the difference between a good individual and a great
one.

The MIs in formula (14), (19), (20), (23), (28), and
(29) all involve negative definiteness. It is then neces-
sary to define a function that maps the fulfillment of an
MI, involving negative definiteness, intoR. One such
function can be defined as

f(·) =

{
ρ · λmax(·) + β forλmax(·) ≥ 0
0 forλmax(·) < 0

(33)

whereλmax is the largest eigenvalue of the matrix in
the MI andρ andβ are penalty factors. The offsetβ is
included since the MIs are strict, and thus aλmax = 0
cannot be allowed to yieldf(·) = 0. The slope of
f(·) ensures that large positive values ofλmax results
in high values forf(·) while decreasing values for
λmax results in a decreasing value forf(·). Assign-
ing functionsf1, ..., f6, of the formf(·), to the MIs
in (14), (19), (20), (23), (28), and (29) respectively
and inserting into (32) results in the fitness function,
F(M2,M∞,Θ).

F(M2,M∞,Θ) =
1

1 +
∑6
i=1 fi

(34)

By looking at the MIs in formula (23), (28), and (29)
it is seen thatγ∞, which have not yet been defined,
is included.γ∞ could be set as a constant value,



however, this would be very restrictive and would limit
the possibility of finding a feasible multi-objective
H2/H∞ controller using the EA.γ∞ could also be
found iterative, though this might result in having to
includeγ∞ as a variable in the individuals in the EA.
However, another possibility is to define an expression
for γ∞ based on the existing variables,M2, M∞, and
Θ, thus, indirectly implementing the iteration as part
of the EA. By introducing a weighting

ζ =
γ2

γ∞
(35)

an expression forγ∞ will be given as√
tr
(
BT

0 (MT
2 M2)−1B0

)
ζ

< γ∞. (36)

When attempting to find the optimal controller, which
will be described later, the weighting,ζ, can be viewed
as the factor that determines how much the controller
should be optimized forγ2 compared toγ∞. It is
easily seen that even though (36) is strict, it will
be possible to insert the expression forγ∞ given in
formula (37) into the MIs containingγ∞, whenζε =
ζ + ε, ε > 0 andε arbitrarily small.

γ∞ =

√
tr
(
BT

0 (MT
2 M2)−1B0

)
ζε

(37)

With γ∞ defined,F(M2,M∞,Θ) is now fully de-
fined with respect toM2, M∞, and Θ and can be
calculated. The fitness value ofF(M2,M∞,Θ) in-
dicates how close the individual(M2,M∞,Θ) is to a
feasible multi-objectiveH2/H∞ controller,Θ. Thus,
if F(M2,M∞,Θ) = 1 thenΘ is a feasible multi-
objectiveH2/H∞ controller for the system. However,
even thoughΘ is a feasible multi-objective controller
it will most likely not be the optimal multi-objective
controller.

As mentioned in section 2, the optimal controller can
be found by minimizingγ2 and γ∞. From formula
(13) and (37) it is seen that bothγ2 and γ∞ is ex-
pressed bytr

(
BT

0 (MT
2 M2)−1B0

)
, and the degree

of optimization ofγ2 compared toγ∞ is given by
ζ. So forF(M2,M∞,Θ) = 1 and by minimizing
tr
(
BT

0 (MT
2 M2)−1B0

)
, the desired optimal multi-

objective controller can be found. The conditions can
be combined into a joint fitness function

Fopt =
1

1 + tr
(
BT

0 (MT
2 M2)−1B0

)
+
∑6
i=1 fi

(38)

This joint fitness function is, however, not without
flaws, and these flaws will be described in detail in
section 4.

3.3 Crossover

For simplification the crossover operation will be per-
formed so that two parent individuals creates two

offspring. Furthermore, when crossover is performed
only one matrix type from the parent individuals will
be used in the operation, whereas the two remaining
matrix types will be transferred directly to the off-
spring. An example would be that two parents

p1 : (1M2,
1M∞,

1Θ),

p2 : (2M2,
2M∞,

2Θ)

would result in two offspring

o1 : (1M2,
2M∞,

1Θ),

o2 : (2M2,
1M∞,

2Θ).

The probability for which of the three matrix types
that is transferred should be equal in order to gain
maximum effect of the operation. In this case a prob-
ability of 1/3 would be preferable.

The interchanging of matrices in the above example
reduces the drawbacks mentioned in section 3.1, since
recombination of the matrices in the different individ-
uals now will be performed in a limited way. However,
in order to add diversity to the population, convex
combination of the interchanged matrices will also be
performed. Thus, the offspring of the above example
would, using convex combination, be

o1 : (1M2, α · 1M∞ + (1− α) · 2M∞,
1Θ)

o2 : (2M2, (1− α) · 1M∞ + α · 2M∞,
2Θ)

where0<α<1.

It should be noted that even though the parentspM2

andpM∞ produce offspring,oM2 andoM∞, that is
a convex combination of the parents, after applying
(30) the offspringoX2 and oX∞ will, however, not
be a convex combination ofpX2 and pX∞. Since
Θ is used directly in the individuals it can easily be
seen that forpΘ the offspringoΘ will actually be a
convex combination of the parents. The probability for
whether direct transfer or convex combination will be
performed on the transferred matrix type could be set
to any value, however, a probability of1/2 would be
reasonable.

3.4 Mutation

Two ways of performing mutation on the individuals
will be presented in this paper. The first way is to
perform the mutation on a single element of one of
the matrices,M2, M∞ or Θ. A Gaussian distributed
random number with zero mean and deviationσi,
N(0, σi), is added to the element that is selected to
be mutated. Since the random number is Gaussian
distributed, the probability that the mutation will result
in minor changes is high, though it also depends on
the size of the deviationσi. The deviationσi will
be based on the very successful Rechenberg’s ‘1/5
success rule’ (Eibenet al., 1999), which states that
1/5 of all mutations performed should be successful.



If the success rate is lower than1/5, the deviation is
decreased according to

σi+1 = c · σi 0.817 ≤ c ≤ 1 (39)

and for success rates higher than1/5 the deviation is
increased according to

σi+1 = σi/c 0.817 ≤ c ≤ 1 (40)

It is noticeable that a success rate higher than1/5
would result from the parents being distributed un-
evenly around the optimum, and the deviation is then
increased to compensate for that. Similarly, a success
rate lower than1/5 would result from the parents
being evenly distributed around the optimum, and the
deviation is then decreased in order to heighten preci-
sion and increase convergence around the optimum.

In order to obtain further diversity in the population
the second way of performing mutation is to multiply
an entire matrix in an individual with a scalar value.
The scalar value is a Gaussian distributed random
number with mean1 and deviationσi,N(0, σi). In the
EA, the probability for an entire matrix to be mutated
can be set equal to the probability for mutation of
a single element or lower. Thus, the impact on the
population, when a scalar multiplication mutation is
performed on a matrix, will be limited and will not
cause the population to diverge.

4. VALIDATION

After having developed the theory for using EAs to
synthesize a multi-objectiveH2/H∞ controller, an
EA was developed to examine the feasibility of this
approach. The EA was developed in Java and tested
on several simple plants. These tests resulted in a
variety of experiences.

First, it should be mentioned that for small simple
plants the EA could automatically find feasible multi-
objectiveH2/H∞ controllers. It was also possible to
optimize the multi-objective controllers, even though
the resulting controllers might not have been near
optimal.

The EA requires a vast amount of computations which
further results in long a computation time. Since the
search area for the EA is very large, the population
size had to be above 20 in order to obtain a usable
controller for a system with two plant states and one
controller state. Larger population sizes resulted in
increasingly better results. Expanding the system with
either one plant or controller state, resulted in the
matricesM going from3 × 3 to 4 × 4. This resulted
in a higher population size needed for finding feasible
controllers, due to an increased search area. Thus, us-
ing the EA to synthesize a controller for increasingly
larger plants, resulted in an exponential reduction in
the performance of the EA.

Using only the fitness function given in (38) caused
the EA to fail. This was caused by a contradiction

between optimizing the termtr
(
BT

0 (MT
2 M2)−1B0

)
and fulfilling the MIs. The problem was solved by
using the fitness function of (34) to search for a fea-
sible controller. When a feasible controller had been
found, the fitness function was changed to the one
given in (38). By reevaluating the entire population,
the new fitness function could then be used to search
for the optimal multi-objective controller. However,
the termβ used in (33) had to be set to the value
of tr

(
BT

0 (MT
2 M2)−1B0

)
for the first feasible con-

troller found. If this was not done, the MIs would be
violated when the termtr

(
BT

0 (MT
2 M2)−1B0

)
was

being minimized, and the controllers found would be
unfeasible.

It has not been investigated whether feasible con-
trollers can be gathered in several separate areas of the
search space. If it is a possibility, then the developed
EA could risk being stuck in the first area of feasible
controllers encountered, regardless of whether the op-
timal controller is contained in that area or not. This
would, however, only result from a non-convex fitness
function and for solving problems like that EAs, like
the one developed in this paper, are one of the best
methods.
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