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Abstract: The feedback control structures are required in the presence of any kind of
uncertainty. The benefits of the feedback are mainly paid with an excessive bandwidth that
amplifies the sensor noise, saturating the actuators. This implies the necessity of design trade-
offs highly transparent from the Quantitative Feedback Theory. Supposing a given uncertainty
for a plant, the set of performance and stability requirements will condition the problem
solution. Taking advantage of the QFT bound typology and formulation, the contribution of
the robust specification values to their simultaneous achievement will be analysed and
particularly as regards the challenging task of the controller design. &RS\ULJKW��������,)$&�
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1. INTRODUCTION

The feedback control is justified just in the presence of
model and/or disturbance uncertainties (Horowitz,
1963). In this case, the benefits of the feedback
inevitably have a price. The design trade-offs in a
minimum phase SISO feedback control system
requires, in terms of the open loop transmission /=*3:
(D) a low-medium frequency gain |/| high enough for
an appropriate robust performance in the reference
signal tracking and the disturbance rejection tasks; (E) a
|/| decrement as fast as possible with frequency that
avoids a large noise amplification mainly at the
actuator inputs (Horowitz, 1973); (F) a constraint of the
|/| decrement rate by the robust stability requirements.

The feedback control trade-offs are expected to become
tougher with an increasing uncertainty size and more
ambitious specifications. Supposing a fixed uncertainty,
this work is aimed at analyzing the contribution of the
specification values to the feedback trade-offs. A
quantitative formulation of the problem, such as the
Quantitative Feedback Theory (QFT) (Horowitz, 1963)
is very helpful in this sense. To be precise, the QFT
bounds contain all the information. They stand for the
set of control specifications and the plant uncertainty in
the Nichols Chart (NC). Therefore, a thorough study of
them answers two crucial questions in terms of control
theory: the compatibility amongst different robust
specifications and the existence of a controller capable
of meeting simultaneously all of them.

Several dissertations on the previous questions can be
found in: Åstrom (2000a,b), Skogestad and
Postlethwaite (1996). The QFT has already offered
some answers. Horowitz (1979, App.1) proved the
existence of a unique optimum / that satisfies a number
of robust specifications, under certain constraints on the
plant and on the specifications. Gil-Martínez and
García-Sanz (2001) dealt with the simultaneous
meeting of the control specifications without those
restrictions. Three bound typologies were identified for
general feedback purposes and their compatibility was
discussed. On the basis of this previous work, the
present paper studies more in detail the tolerance
contribution to the bound compatibility and, mainly, to
the difficulties in the loop shaping step (controller
design). Chait and Yaniv (1993) developed bound
quadratic inequalities as an aid in the automatic bound
computation and the controller design. This bound
formulation is used in the present work.

Section 2 covers the general feedback control
requirements and includes a quick overview of previous
contributions to the bound formulation and
classification. Section 3 reviews the bound formulas to
identify the influence of each robust specification
model on its representative bound. Section 4 is devoted
to the difficulties related to the bound compatibility
and, mainly, to the feedback controller design as a
consequence of the more ambitious specifications.
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2. FEEDBACK CONTROL FROM QFT
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Figure 1: Control structure.

Supposing an uncertain plant, {3}, and unmeasurable
disturbances, {'���'�}, Figure 1 shows a general two-
degrees-of-freedom (Horowitz, 1963) feedback control
structure. The controller *�V� must guarantee a robust
stability, reduce the closed loop uncertainty and
attenuate the input and output disturbances. *�V� also
ensures a high frequency gain low enough to minimize
the ‘cost of the feedback’ (excessive bandwidth) (Bode,
1945; Horowitz, 1973). Afterwards, the prefilter )�V�
shapes the output performance in the reference
tracking. Unity feedback is assumed for simplicity.

The QFT outlines the control objectives in the
frequency domain and in terms of inequalities (Houpis
and Rassmussen, 1999; Yaniv, 1999). Closed loop
specification tolerances δk are imposed on the system’s
transfer functions |7k| from some inputs to some outputs
(see |7k|≤δk, N=1,...,5 in Table 1). δN=1 restricts the
complementary sensitivity function |7|=|//1+/|, /=*3,
implying conditions on the robust stability, the robust
control effort in the input disturbance rejection (|8�'1|)
and the robust sensor noise attenuation (|<�1|). δN=2 and
δN=3 constrain the sensitivity functions |6|=|1/1+/| and
|6|=|3/1+/|, respectively, for a robust rejection of the
system output (|<�'2|) and input (|<�'1|) disturbances.
δN=4 restricts the robust control effort |*/1+/| for the
system output disturbance rejection (|8�'2|), the noise
attenuation (|8�1|) and the tracking of the reference
signals (|8�5)|). The upper δ5sup and lower δ5inf models
constrain the signal tracking.

Table 1: Feedback control specifications
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Considering a particular frequency vector {ωL}, the
QFT translates the closed-loop specifications {δk(ωL)}
and the plant WHPSODWHV (boundaries of the uncertain
LTI plant at each frequency in {ωL}, on the NC; Chen
and Ballance, 1999) into bounds on the controller

*(MωL) or on the nominal loop transmission /0=30*
(Houpis and Rasmussen, 1999; Yaniv, 1999). Chait and
Yaniv (1993) developed an iterative algorithm to
compute the bounds as follows. Borghesani HW�DO., 1994
implemented it in their software package. Each plant in
the ωL-template can be expressed in its polar form as
3(MωL)=S⋅HMθ=S∠θ and, likewise, the controller polar
form is *(MωL)=J⋅HMφ J∠φ. Then, substituting and
rearranging the inequalities (1) to (5) in Table 1, they
are reduced to the quadratic inequalities (6) to (10) in
Table 2. For a particular frequency ωL, there is a
constant δN=δN(ωL), and for a fixed plant S∠θ in the ωL-
template and a fixed controller phase φ in [-360º,0º],
the unknown parameter of the inequalities in Table 2 is
the controller magnitude J. Then, solving equalities
such as DJ�+EJ+F=0 the set of ωL-bounds for {δN=1,..,5} is
computed, leaving apart transitory the uncertainty {3}.

Table 2: Bound quadratic inequalities
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1  01)cos(2
1

1 2
2

1

2 ≥+⋅+⋅⋅+⋅





−⋅ JSJS θφ

δ
(6)

2  0
1

1)cos(2
2
2

22 ≥





−+⋅+⋅⋅+⋅

δ
θφ JSJS (7)

3  01)cos(2
2
3

2
22 ≥





−+⋅+⋅⋅+⋅

δ
θφ S

JSJS (8)

4  01)cos(2
1 2

2
4

2 ≥+⋅+⋅⋅+⋅





− JSJS θφ

δ
(9)

5  0)cos()cos(2
1

1
2
5

2
2

2
5

2
2
5

22 ≥



 −+



 +−++



 −

δ
θφ

δ
θφ

δ
G

HH

G

GHGHGH

S
SJ

S
SSSJSS (10)

Gil-Martínez and García-Sanz (2001) introduced the
two possible solutions (*-bound formulation) to the
quadratic inequalities in Table 2 for each feedback
problem in Table 1. See Table 3. Choosing real and
positive solutions J12 in Table 3 as effective controller
restrictions, the same authors mentioned four ways to
meet the bounds (i.e. the region on the NC to locate
J∠φ), called typologies (see Figure 2). A bound plotted
with a VROLG�OLQH implies that *(jω) (or /0(jω)) must lie
above or on it to meet the particular specification, while
a bound plotted with a GDVKHG�OLQH means that *(jω) (or
/0(jω)) must lie below or on it.

Table 3: *-bound formulation

N J��� bound formulas Eq.

1



















−−++−







−⋅

=
2

1

2

2
1

2,1
1

1)(cos)cos(
1

1

1

δ
θφθφ

δ

m

S

J (11)

2


















−−++−⋅=

2
2

2
2,1

1
1)(cos)cos(

1

δ
θφθφ m

S
J (12)

3


















−−++−⋅=

2
3

2
2

2,1 1)(cos)cos(
1

δ
θφθφ S

S
J m (13)

4 

















−−++−⋅







−⋅

=
2
4

2
2

2
4

2

2,1
1

1)(cos)cos(
1

1

1

δ
θφθφ

δ
S

S
S

J m (14)

5







−





−−





+−+







+−+−⋅







−

=

2
5

2
2

2
5

2
5

2
5

2
5

2,1

1
1)cos()cos(

)cos()cos(
1

1

1

δδ
θφ

δ
θφ

θφ
δ

θφ

δ

G
HH

G

GH

H

G

GH

GH

S
S

S
S

S
S

SS

J

m

(15)



-360 -270 -180 -90 0
-18

-8

2

12

(a) Typology A

φ [º]

g 12
 [

dB
]

-360 -270 -180 -90 0
5

15

(b) Typology B

φ [º]

g 2 [
dB

]

-360 -270 -180 -90 0
-18

-8

2

12

(c) Typology C

φ [º]

g 12
 [

dB
]

-360 -270 -180 -90 0
-30

-20
(d) Typology D

φ [º]

g 1 [
dB

]

g 〈 φ  > g2  〈 φ 

g 〈 φ  <  g1  〈 φ 

g 〈 φ  > g2  〈 φ 

g 〈 φ  > g2  〈 φ 

g 〈 φ  <  g1  〈 φ 

g 〈 φ  <  g1  〈 φ 

Figure 2: Bound typologies.

Computing the set of {J12} for all the ωL-template
{S∠θ}, the less favourable (agreeing the typology), real
and positive J1 and/or J2 can be calculated. Finally,
Table 4 summarises the *-bound formulation and
typology for the robust specifications in Table 1; (Gil-
Martínez and García-Sanz, 2001). The setting of the
bounds on /0=30⋅* for a nominal plant 30∈{3}, rather
than on *, is more natural for the loop shaping in QFT.
Then, being /0(jωL)=O�∠ψ�, the /0-bounds are simply
computed by translating the *-bounds vertically as
|30(jωL)|=S� and horizontally as ∠30(jωL)=θ�. The
results given for the *-bounds throughout the paper can
also be applied to the /0-bounds.

Table 4: Bound meeting for general feedback problems

N δN(ωL) Typ *-bound meeting; J� and J� in (11) to (15)
10 1 << δ D φφ ∠≤∠ }{ 1JPLQJ [ ]º0,º360−=∈Φφ

1
11 >δ A φφ ∠≥∠ }{ 2JPD[J φφ ∠≤∠ }{ 1JPLQJ [ ]εθΦφ m}{º18012 −−=∈

10 2 << δ B φφ ∠≥∠ }{ 2JPD[J [ ]º0,º360−=∈Φφ
2

12 >δ A φφ ∠≥∠ }{ 2JPD[J φφ ∠≤∠ }{ 1JPLQJ [ ]εθΦφ m}{º18012 −−=∈
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On the basis of this background, the following sections
include a wide insight in role of δk in the bound
compatibility at each frequency and in the skills
necessary to loopshape * along the frequency bounds.

3. SPECIFICATION VALUES AND BOUNDS

Checking the *-bound formulas in (11) to (15), note
that for a specific compensator phase φ, the magnitudes
J1, J2 are conditioned by the specification value δk, and
the plant uncertainty: in magnitude {S} and phase {θ}.
The uncertainty is inherent to the nature of the process,
and then, it should be considered as it is. On the other
hand, the specifications δk=1,...,5 are design parameters to
obtain the best robust performance simultaneously
achievable. The contribution of the δk-value to the *-
bounds is two-folded.

First, δN conditions the bound typology (see Table 4).
Obviously, the bound type determines the compatibility
of the set of ωL-bounds (N=1,...,5 bounds).

The other δk contribution focuses on the bound
aggressiveness in terms of height (J�� magnitudes) and
width (Φ�� phase range). In the typology A (Figure 2D),
J∠φ≤PLQ{J�}∠φ and J∠φ≥PD[{J�}∠φ, φ∈Φ�� 
[−180º−{ θ}mε], the bound severity increases when: (D)
its existing phase range Φ�� ({θ} or ε) increases, (E) the
magnitudes J� decrease and the magnitudes J2 increase
at each φ∈Φ�� for {S∠θ}. In the typology B (Figure
2b), J∠φ≥PD[{J�} ∠φ, φ∈Φ [-360º, 0º], the bound is
more severe when the magnitudes J2 increase at each
φ∈Φ� for {S∠θ}. In the typology D (Figure 2G),
J∠φ≤PLQ{J�} ∠φ, φ∈Φ [-360º, 0º], the bound hardens
when the values J1 decrease at each φ∈Φ for {S∠θ}.

The figures δN ������ are following analyzed, proving
their role on the typology of the bound (bound shape)
and on its aggressiveness (bound height and width).

����6SHFLILFDWLRQ�YDOXHV�RQ�WKH�FRPSOHPHQWDU\
VHQVLWLYLW\�IXQFWLRQ��_/�1�/_≤δ�

As shown in Table 4, depending on the specification
value, constant at ωL as δ1=δ1(ωL), there are two
different bound typologies in (11): D for 0<δ1<1 (Case
I), and A for δ1>1 (Case II). To ensure reasonable
phase and gain margins (30��*0) in terms of robust
stability (|//1+/|<δ1), a minimum value of δ1>1.3 is
advisable. It ensures 30≥45º and *0≥5dB (Chait and
Yaniv, 1993). Therefore, a δ1=δ1(ωL)≈1.3>1 at the set
{ ωi} ensures that the stability bounds are always of
type A (Case I). In general, the specifications for robust
sensor noise attenuation (|<�1|�δ1) are watched at high
frequencies and usually satisfy 0<δ1<1, since the noise
effect must be attenuated at the output. Then, they
provide type D bounds. As regards the control effort
allowed for the input disturbance rejection (|8/'1|<δ1),
δ1 can take any value higher than 0, and therefore
produce bounds of type B or A.

&DVH� ,�� 0<δ1<1, *�%RXQGV� RI� W\SH� '. When the
specification value δ1=δ1(ωL) decreases in (11), the
magnitude J1 drops in φ∈[-360º, 0º], and then, the
bound condition is more severe. See Figure 3D.

&DVH� ,,�� δ1>1, *�%RXQGV� RI� W\SH� $. Checking (11), a
decrease in δ1 implies, an increase in ε (bounds at a
wider phase band), J2 rises and J1 is reduced. Then, the
bounds are more severe when the specification figures
of merit decrease, as shown in Figure 3E.

In summary, the smaller the specification value is, the
more aggressive the corresponding bound in both cases
is, namely bounds of type A or D. A decrease in δ1 also
implies a transition to a harder typology (A to D) at
δ1=1. A smaller δ1 tolerance involves harder restrictions
on the stability and the performance: larger phase and
gain margins, a smaller control effort for the



disturbance rejection or a higher noise attenuation level
required in the output. Its QFT representation through
the bounds in Figure 3 shows it.
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Figure 3: δ1 influence on its representative bound.

����6SHFLILFDWLRQ�RQ�WKH�VHQVLWLYLW\� IXQFWLRQ��|1�1�/|≤δ�

Depending on the specification value at ωL, δ2=δ2(ωL),
two different bound typologies in (12) will appear: B
for 0<δ2<1 (Case I), and A for δ2>1 (Case II); see Table
4. In line with (2), |<�'2|�δ2 expresses the robust
performance in the rejection of output disturbances.
Then, δ2 usually takes attenuation values 0<δ2<1,
giving type B bounds. The sensitivity values |6|<<1 at
some low frequencies need, at least in practice, that
|6|>1 at some moderate high frequencies (Skogestad
and Postlethwaite, 1996). This 6 peak must be
constrained by δ2>1 but close to 1 to ensure minimum
gain and phase margins.

&DVH� ,�� 0<δ2<1, *�%RXQGV� RI� W\SH� %. When the
specification δ2 decreases, the magnitude J2 increases
in φ∈[-360º, 0º], and thus the bound condition is more
severe. Figure 4D shows these results. Smaller figures
of merit δ2 imply a more aggressive specification in
order to obtain a larger '2 attenuation level at <.

&DVH�,,��δ2>1, *�%RXQGV�RI�W\SH�$. The role of δ2>1 is
the same than the one described in Section 3.1 for the
Case I, δ1>1. Larger stability margins (δ2 decrement)
imply stronger type A bounds. See Figure 4E.
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Figure 4: δ2 influence on its representative bound.

����6SHFLILFDWLRQ�YDOXHV�RQ�WKH�VHQVLWLYLW\�SOXV�WKH
SODQW�IXQFWLRQ��_3�1�/_≤δ�

The equation (13) in Table 3 provides two different
bound typologies which depend on the relation between
the constant specification δ3=δ3(ωL), and the plant
magnitude {S(ωL)}. A typology B appears if
∃S∈{S}/S>δ3 at ωL (Case I), and a typology A exists if
∀S∈{S}/S<δ3 (Case II). Since |<�'1|=|3/1+/|≤δ3

expresses the attenuation in the plant output of
disturbances at its input, the δ3-tolerance usually takes
values of 0<δ3<1. It may produce type B or type A
bounds. Since the smaller δ3 and bigger {S} produce at
low frequencies, type B bounds are more usual at these
frequencies. Smaller δ3 imply stronger B or A bounds
which involve a larger disturbance attenuation. The
bound appearance for the δ3 variation is the same than
the one for theδ2 specification in Figure 4.

����&RQWURO�HIIRUW�UHVWULFWLRQV��_*�1�/_≤δ�

As shown in Table 4, depending on the relation
between the specification, δ4=δ4(ωi), and the plant
magnitude {S(ωi)}, the equation (14) offers two
different typologies: D when ∃S∈{S}/S<1/δ4 (Case I),
and A if ∀S∈{S}/S>1/δ4 (Case II). Note that δ4 can
take any value >0, generating type D or A bounds.
Smaller δ4-values imply tougher D or A bounds, i.e.
larger restriction on the control effort, usually required
with increasing frequencies. The bound variation looks
like the δ1-specification influence shown in Figure 3.

����6LJQDO�7UDFNLQJ��δ�LQI≤_/�1�/_≤δ� VXS

The particular performances of the signal tracking and
the disturbance attenuation require two degrees of
freedom (Horowitz, 1963). The goal of the controller in
the tracking is to reduce the closed loop 7-variation,
being |7|=|3*/(1+3⋅*)|, due to the uncertainty in 3. At
the same time, * should achieve the remaining
performance and stability specifications. At a second
design step, a pre-filter ) positions |75|=|)⋅7| according
to the upper δ5sup and lower δ5inf models in (5). In the
task of the *-controller design, (5) can be rewritten as:
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(16)

assuming that |7G(MωL)|>|7H(MωL)|. Since δ5sup>δ5inf, then
δ5(ωL)>1. A δ5-decrement is aimed at obtaining a larger
reduction in the 7-variation for the same uncertainty in
3. Then, the specification is more severe, and its QFT
bound behaves correspondingly.

According to the bound formula in (15), the relation
between δ5(ωL) and the plant maximum magnitude
uncertainty, Smax/Smin(ωL), determines two different
typologies of bounds (see Table 4). The type B for
Smax/Smin>δ5 (Case I), and the type A for Smax/Smin<δ5

(Case II). Let’s assume Smax and Smin, the plants with
maximum and minimum modulus in {S(ωL)}.
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Figure 5: δ5 influence on its representative bound.

&DVH� ,�� Smax/Smin>δ5, *�%RXQGV� RI� W\SH� %. When the
specification δ5=δ5(ωL) decreases (major uncertainty
reduction required), the magnitude J2 in (15) decreases
at φ∈[-360º, 0º], so the bound condition hardens. See
Figure 7D.

&DVH� ,,� Smax/Smin<δ5, *�%RXQGV� RI� W\SH� $. When δ5

decreases: ε increases, J2 rises and J1 decreases; then,
the bound fulfillment toughens. Check Figure 7E. The
type A bound relaxation at high frequencies allows
closed loop uncertainties larger than those of the open
loop, with a negligible feedback effect

4. CONTROLLER DESIGN STRATEGIES

The bounds are the crux of the solution to the robust
feedback problem in QFT from two different points of
view. Firstly, it is necessary to have bound
compatibility. This means that at each frequency ωL,
there must be a non-null bound intersection amongst
the bounds expressing the different� N robust
specifications. Secondly, it must be possible to
loopshape a nominal open loop transmission,
/�(jωL)=*(jωL)3�(jωL), meeting the non-null bound
intersection along the set of frequencies {ωL}.

Gil-Martínez and García-Sanz (2001) partially dealt
with the first question. They claimed that to meet multi-
objective bounds at a particular frequency
simultaneously, type A bounds of any magnitude J1,2

can coexist with type B or D bounds. If type B and D
bounds coexist, the D-bound J1 magnitudes should be
higher than the B-bound J2 magnitudes for some φ,
relaxing δN when necessary. This is a consequence of
the trade-offs in the feedback control, which harden in
the case of the uncertain systems. The present paper
includes some more insights in the matter.

After establishing that the bound typology has a strong
influence on the existence of a global solution, note
that: (D) the bound typology of the feedback problems
N=1,2 depends exclusively on the desired behavior δN;
(E) in contrast, for N=3,4, the bound typology is not
only determined by the desired specification, but also
by the uncertainty inherent to the system; (F) the
feedback benefits at low and medium frequencies

expressed through specifications N=2,3,5 usually lead to
type B bounds; (G) as a particular case of the feedback
problem N=1, robust stability constraints appear in any
control problem, but fortunately, they provide typology
A bounds that are compatible with other typologies.

The bound magnitude J12 at each φ and the bound
phase range Φ�� are other relevant factors in the bound
solution. Section 3 showed the influence of δN in this
case. As expected, stronger δN figures of merit lead to
more severe bounds expressing them in QFT (see
Figures 3, 4, 5).

Assuming a bound compatibility at each frequency, the
bound severity increase due to the harder δN tolerances
implies a more challenging loopshaping of the
controller. The following example proves it. Let's
suppose an uncertain plant family {3(s)=N/(s/D+1),
N∈[1, 5], D∈[1, 5]}. Two frequencies are evaluated, a
low frequency ωOI=1rad/s and a high frequency
ωKI=100rad/s. Figure 6 shows the plant templates, with
a nominal plant 3�(jω) for N=1, D=1. The feedback
requirements are: (D) a robust stability with
δ1(ωL)=δ1=1.3 for all frequencies, in particular,
ωL={1,100} rad/s. This ensures for the whole set of
plants that 30≥45º and *0≥5dB. (E) A robust
disturbance rejection at low-medium frequencies,
gained with a suitable δ2(ωOI) tolerance at ωOI=1 rad/s.
This imply a comparison between δ2

I(ωOI)=0.3 and
δ2

II(ωOI)=0.1. The first one assures a disturbance
attenuation level of |</'�|≤-10.5dB, and the second one
of -20dB.
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Figure 6: Plant templates.

According to Table 4, since δ2
II(ωOI)=0.1 and

δ2
I(ωOI)=0.3 are lower than 1, they imply typology B

bounds. In keeping with Figure 4D and Section 3.2, a
decrease in δ2 implies an increase in the bound height
(severity), particularly around 0º and –360º: δ2

II implies
a more stringent requirement than δ2

I in the disturbance
attenuation. As a consequence of it, a larger controller
static gain is required (see Figure 7). The loopshaping,
/��=*�3�, provides a controller for the weaker
specification (δ2

I(ωOI)=0.3):
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Figure 7: Bounds and loopshaping for robust stability
and output disturbance rejection.

An improvement in the performance of the disturbance
rejection requires a larger controller static gain (≈11dB
increment between *� or *� and *� gains), claimed by
a higher ωOI-bound. The drawbacks turn up at high
frequencies (see Figure 7), where |/�(ωKI=100)| raises
from –33.6dB for /�� to –22.3dB for /�� or to –17dB
for /��. Figure 8 shows some comparative
performances between the *� and *� controllers in the
time domain for the nominal plant 3�=1/s+1 (plant with
the slowest dynamic response). A step disturbance,
'�(V)=1/s, appears at W=1sec., being the reference
5(V)=0.  The sensor noise 1(s) is simulated by means of
a noise disturbance signal with a correlation time 100
times smaller than the fastest dynamics of the system.
Figure 8D shows the larger disturbance level attenuation
gained with *� against *�, although it also implies a
slightly larger noise amplification at the system output.
Figure 8E clearly proves the main feedback drawback:
a high frequency |/�| mainly leads to large |8�1| values
that can saturate the actuators (Horowitz, 1973). Better
feedback benefits at low frequencies and a relative
small high frequency |/�| (to avoid |8�1| peaks) are
simultaneously possible by increasing the complexity
of the controller. Compare *� with *� in Figure 7.
However, a higher controller order also implies larger
delays in the right control application in practice. The
*�-controller simplicity implies overdesign in stability
margins (≈23º in 30 and 17dB in 30).

5. CONCLUSIONS

The more severe performance and stability
specifications in SISO uncertain plants were required,
the more stringent feedback trade-offs were proven.
Firstly, the bound aggressiveness was studied.
Secondly, the controller synthesis difficulties were
detailed in a practical example.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

1.5

t [sec]

yI
,y

II
, 

d 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-15

-10

-5

0

5

10

t [sec]

u

d 

yI 

yII 

uI 

uI I 

(a) 

(b) 

Figure 8: Time domain performance for 3�(V)=1/V+1.
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