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Abstract: The feedback control structures are required in the presence of any kind of
uncertainty. The benefits of the feedback are mainly paid with an excessive bandwidth that
amplifies the sensor noise, saturating the actuators. Thisimplies the necessity of design trade-
offs highly transparent from the Quantitative Feedback Theory. Supposing a given uncertainty
for a plant, the set of performance and stability requirements will condition the problem
solution. Taking advantage of the QFT bound typology and formulation, the contribution of
the robust specification values to their simultaneous achievement will be analysed and
particularly as regards the challenging task of the controller design. Copyright © 2002 IFAC.
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1. INTRODUCTION

The feedback control isjustified just in the presence of
model and/or disturbance uncertainties (Horowitz,
1963). In this case, the benefits of the feedback
inevitably have a price. The design trade-offs in a
minimum phase SISO feedback control system
reguires, in terms of the open loop transmission L=GP:
(a) a low-medium frequency gain |L| high enough for
an appropriate robust performance in the reference
signal tracking and the disturbance rejection tasks; (b) a
|L] decrement as fast as possible with frequency that
avoids a large noise amplification mainly at the
actuator inputs (Horowitz, 1973); (¢) a constraint of the
|L| decrement rate by the robust stability requirements.

The feedback control trade-offs are expected to become
tougher with an increasing uncertainty size and more
ambitious specifications. Supposing a fixed uncertainty,
this work is aimed at analyzing the contribution of the
specification values to the feedback trade-offs. A
quantitative formulation of the problem, such as the
Quantitative Feedback Theory (QFT) (Horowitz, 1963)
is very helpful in this sense. To be precise, the QFT
bounds contain all the information. They stand for the
set of control specifications and the plant uncertainty in
the Nichols Chart (NC). Therefore, a thorough study of
them answers two crucia questions in terms of control
theory: the compatibility amongst different robust
specifications and the existence of a controller capable
of meeting simultaneously all of them.

Several dissertations on the previous gquestions can be
found in: Astrom (2000a,b), Skogestad and
Postlethwaite (1996). The QFT has already offered
some answers. Horowitz (1979, App.l) proved the
existence of a unique optimubthat satisfies a number

of robust specifications, under certain constraints on the
plant and on the specifications. Gil-Martinez and
Garcia-Sanz (2001) dealt with the simultaneous
meeting of the control specifications without those
restrictions. Three bound typologies were identified for
general feedback purposes and their compatibility was
discussed. On the basis of this previous work, the
present paper studies more in detail the tolerance
contribution to the bound compatibility and, mainly, to
the difficulties in the loop shaping step (controller
design). Chait and Yaniv (1993) developed bound
guadratic inequalities as an aid in the automatic bound
computation and the controller design. This bound
formulation is used in the present work.

Section 2 covers the general feedback control
requirements and includes a quick overview of previous
contributions to the bound formulation and
classification. Section 3 reviews the bound formulas to
identify the influence of each robust specification
model on its representative bound. Section 4 is devoted
to the difficulties related to the bound compatibility
and, mainly, to the feedback controller design as a
consequence of the more ambitious specifications.



2. FEEDBACK CONTROL FROM QFT

2.1 Multiple robust control specific ations
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Figure 1: Control structure.

Supposing an uncertain plant, { P}, and unmeasurable
disturbances, {D,, D,}, Figure 1 shows a general two-
degrees-of-freedom (Horowitz, 1963) feedback control
structure. The controller G(s) must guarantee a robust
stability, reduce the closed loop uncertainty and
attenuate the input and output disturbances. G(s) aso
ensures a high frequency gain low enough to minimize
the ‘cost of the feedback’ (excessive bandwidth) (Bode,

G(ja) or on the nominal loop transmissidR=P,G
(Houpis and Rasmussen, 1999; Yaniv, 1999). Chait and
Yaniv (1993) developed an iterative algorithm to
compute the bounds as follows. Borghesanil., 1994
implemented it in their software package. Each plant in
the w-template can be expressed in its polar form as
P(jag)=pd®=p0 8 and, likewise, the controller polar
form is G(jw)=g@?~g0@ Then, substituting and
rearranging the inequalities (1) to (5) in Table 1, they
are reduced to the quadratic inequalities (6) to (10) in
Table 2. For a particular frequenay, there is a
constantg,=J(a), and for a fixed planpd8in the -
template and a fixed controller phagen [-360°,0%,

the unknown parameter of the inequalities in Table 2 is
the controller magnitudez. Then, solving equalities
such a81g2+bg+c:0 the set oty-bounds for .- s} is
computed, leaving apart transitory the uncertaify {

Table 2: Bound guadratic inequalities

1945; Horowitz, 1973). Afterwards, the prefiltéys)

k  Bound Quadratic Inequality Eq.

shapes the output performance in the
tracking. Unity feedback is assumed for simplicity.

The QFT outlines the control objectives in the
frequency domain and in terms of inequalities (Houpis

and Rassmussen, 1999; Yaniv, 1999). Closed loops

specification toleranced, are imposed on the system’s
transfer functions7|| from some inputs to some outputs
(see Tul<d, £=1,..,5 in Table 1).9-,; restricts the
complementary sensitivity functiof|£|L/1+L|, L=GP,
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implying conditions on the robust stability, the robust
control effort in the input disturbance rejectiotV/(p4])
and the robust sensor noise attenuatigmvf). J.=, and
O=3 constrain the sensitivity functionS|#|1/14.| and
IS|=IP/1+L]|, respectively, for a robust rejection of the
system output ¥¥D,|) and input (/D,|) disturbances.
O=4 restricts the robust control effoi/[L+L| for the
system output disturbance rejectiotV/(),|), the noise
attenuation (J/N]) and the tracking of the reference
signals (/RF|). The uppeikss,, and lowerdsx models
constrain the signal tracking.

Table 1: Feedback control specifications
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2.2 QFT bound formulation and typologies

®)

Considering a particular frequency vectom} the
QFT translates the closed-loop specificatiodg d))}
and the planttemplates (boundaries of the uncertain
LTI plant at each frequency inud}, on the NC; Chen
and Ballance, 1999) into bounds on the controller

Gil-Martinez and Garcia-Sanz (2001) introduced the
two possible solutionsG-bound formulation) to the
quadratic inequalities in Table 2 for each feedback
problem in Table 1. See Table 3. Choosing real and
positive solutiongz;, in Table 3 as effective controller
restrictions, the same authors mentioned four ways to
meet the bounds (i.e. the region on the NC to locate
g0 @), called typologies (see Figure 2). A bound plotted
with asolid line implies thatG(ja) (or Lo(je)) must lie
above or on it to meet the particular specification, while
a bound plotted with dashed line means tha€(ja) (or
Lo(j)) must lie below or on it.

Table 3:G-bound formulation

Eq.
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Figure 2: Bound typologies.

Computing the set of {g,} for al the «-template
{p0 6}, the less favourable (agreeing the typology), real
and positive g; and/or g, can be calculated. Finally,
Table 4 summarises the G-bound formulation and
typology for the robust specifications in Table 1; (Gil-

First, J, conditions the bound typology (see Table 4).
Obviously, the bound type determines the compatibility
of the set of w-bounds (k=1,...,5 bounds).

The other & contribution focuses on the bound
aggressiveness in terms of height (g;, magnitudes) and
width (@,, phase range). In the typology A (Figure 2a),
glgEmin{g}Ue and glemax{g}0@ @@=
[-180%{ & +¢], the bound severity increases whei): (
its existing phase rang®;, ({ 6 or &) increases,H) the
magnitudeg; decrease and the magnituggsncrease
at each¢g]@;, for {p0@}. In the typology B (Figure
2b), gdgemax{g;} D@ ¢1®=[-360°, OF, the bound is
more severe when the magnitudgsincrease at each
¢g1@ for {pd&. In the typology D (Figure @),
g0 gEmin{g;} 0@ ¢g1@=[-360°, 0F, the bound hardens
when the valueg; decrease at eagl @ for {p( 6.

The figures g, ;. s are following analyzed, proving
their role on the typology of the bound (bound shape)

Martinez and Garcia-Sanz, 2001). The setting of theand on its aggressiveness (bound height and width).

bounds on =Py for a nominal planP,{ P}, rather

than onG, is more natural for the loop shaping in QFT. 3.1 Specification values on the complementary

Then, beingLq(j aw)=L,0¢;, the Ly-bounds are simply
computed by translating th&-bounds vertically as
|Po(ja)|=py and horizontally asOPy(jw)=6,. The
results given for th&-bounds throughout the paper can

also be applied to thig-bounds.

sensitivity function, |L/1+L| <0,

As shown in Table 4, depending on the specification
value, constant atw as &=d(w), there are two
different bound typologies in (11): D for 01 (Case
), and A for &>1 (Case Il). To ensure reasonable

Table 4: Bound meeting for general feedback problemsphase and gain margin8M, GM) in terms of robust

k oalw) Typ G-bound meeting; g; and g, in (11) to (15)
0<d <1l D gOgsminfg}lp 0@ =[-360,0
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On the basis of this background, the following sections
include a wide insight in role of ¢ in the bound
compatibility at each frequency and in the skills
necessary to loopshape G along the frequency bounds.

3. SPECIFICATION VALUES AND BOUNDS

Checking the G-bound formulas in (11) to (15), note
that for a specific compensator phase ¢ the magnitudes
g1, g are conditioned by the specification value ¢, and
the plant uncertainty: in magnitude {p} and phase { &}.
The uncertainty is inherent to the nature of the process,
and then, it should be considered as it is. On the other
obtain the best robust pérformance simultaneously
achievable. The contribution of the J-value to the G-
bounds is two-folded.

stability (L/1+L|<d)), a minimum value of%>1.3 is
advisable. It ensureB)M=45° andGM=5dB (Chait and
Yaniv, 1993). Therefore, &=0,(«w)=1.3>1 at the set

{ @} ensures that the stability bounds are always of
type A (Case ). In general, the specifications for robust
sensor noise attenuatio/Ay|<d,) are watched at high
frequencies and usually satisfy &<1, since the noise
effect must be attenuated at the output. Then, they
provide type D bounds. As regards the control effort
allowed for the input disturbance rejectiotV/(p1|<ay),

o, can take any value higher than 0, and therefore
produce bounds of type B or A.

Case I: 0<6<1, G-Bounds of type D. When the
specification valued=4(w) decreases in (11), the
magnitudeg; drops in ¢J[-360°, 0, and then, the
bound condition is more severe. See Figure 3

Case II: 0,>1, G-Bounds of type A. Checking (11), a
decrease inj, implies, an increase ig (bounds at a
wider phase band}, rises andg;; is reduced. Then, the
bounds are more severe when the specification figures
of merit decrease, as shown in Figube 3

In summary, the smaller the specification value is, the
more aggressive the corresponding bound in both cases
is, namely bounds of type A or D. A decreas@ialso
implies a transition to a harder typology (A to D) at
o=1. A smallerd, tolerance involves harder restrictions
on the stability and the performance: larger phase and
gain margins, a smaller control effort for the



disturbance rejection or a higher noise attenuation level
required in the output. Its QFT representation through
the bounds in Figure 3 showsiit.
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Figure 3: &, influence on its representative bound.
3.2 Specification on the sensitivity function, |1/1+L|<0,

Depending on the specification value at @, &=(w),
two different bound typologies in (12) will appear: B
for 0<d,<1 (Casel), and A for 3,>1 (Case 11); see Table
4. In line with (2), |Y/D,|<d, expresses the robust
performance in the rejection of output disturbances.
Then, & usudly takes attenuation values 0<d<1,
giving type B bounds. The sensitivity values |S|<<1 at
some low frequencies need, at least in practice, that
IS|>1 at some moderate high frequencies (Skogestad
and Postlethwaite, 1996). This S peak must be
constrained by d,>1 but close to 1 to ensure minimum
gain and phase margins.

Case I: 0<0,<1, G-Bounds of type B. When the
specification o, decreases, the magnitude g, increases

in ¢J[-360°, 0F, and thus the bound condition is more
severe. Figure dtshows these results. Smaller figures
of merit &, imply a more aggressive specification in

order to obtain a largdp, attenuation level at.

Case II: 0,>1, G-Bounds of type A. The role ofd,>1 is

3.3 Specification values on the sensitivity plus the
plant function, |P/1+L| <0

The eguation (13) in Table 3 provides two different
bound typol ogies which depend on the relation between
the constant specification d=0y(«w), and the plant
magnitude {p(w)}. A typology B appears if
p{ p}/p>3; at w (Case l), and atypology A exists if
OpO{p}/p<d; (Case I1I). Since |Y/Di|=|PI1+L[<S;
expresses the attenuation in the plant output of
disturbances at its input, the J-tolerance usually takes
values of 0<d<1. It may produce type B or type A
bounds. Since the smaller d; and bigger {p} produce at
low frequencies, type B bounds are more usual at these
frequencies. Smaller d; imply stronger B or A bounds
which involve a larger disturbance attenuation. The
bound appearance for the &; variation is the same than
the one for thed, specification in Figure 4.

3.4 Control effort restrictions, |G/1+ L|<0,

As shown in Table 4, depending on the relation
between the specification, o=d(w), and the plant
magnitude {p(w)}, the equation (14) offers two
different typologies: D when CpO{ p}/p<1/9, (Case 1),
and A if Op{p}/p>1/9, (Case I1). Note that J, can
take any value >0, generating type D or A bounds.
Smaller o,-values imply tougher D or A bounds, i.e.
larger restriction on the control effort, usually required
with increasing frequencies. The bound variation looks
like the J,-specification influence shown in Figure 3.

3.5 Signal Tracking, Os5y<|\L/1+L|<0s

The particular performances of the signal tracking and
the disturbance attenuation require two degrees of
freedom (Horowitz, 1963). The goal of the controller in
the tracking is to reduce the closed loop 7-variation,
being |T|=|PG/(1+PI[&)|, due to the uncertainty in P. At
the same time, G should achieve the remaining
performance and stability specifications. At a second
design step, a pre-filter F positions |Ts|=|F1] according

the same than the one described in Section 3.1 for thd® the upper dg,, and lower &y models in (5). In the

Case |,5>1. Larger stability marginsd{ decrement)

imply stronger type A bounds. See Figute 4
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Figure 4: &, influence on its representative bound.

task of the G-controller design, (5) can be rewritten as:

@) saplc)
IT.(jw)|  Osint (@)

assuming that |7 a)>I7.( ). Since &sp>dsin, then
A(w)>1. A &-decrement is aimed at obtaining a larger
reduction in the 7T-variation for the same uncertainty in
P. Then, the specification is more severe, and its QFT
bound behaves correspondingly.

=d5(w) =05 (16)

According to the bound formula in (15), the relation

between J5(w) and the plant maximum magnitude

uncertainty, pmadpmin(@), determines two different

typologies of bounds (see Table 4). The type B for

Pradprin>0s (Case 1), and the type A for pmadpmin<ds

(Case ll). Let's assumgns and pyin, the plants with
maximum and minimum modulus ip{w)}.
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Case I pmaxdpmin>0s, G-Bounds of type B. When the
specification o5=05(w) decreases (major uncertainty
reduction required), the magnitude g, in (15) decreases

a ¢@l[-360°, 07, so the bound condition hardens. See
Figure 7.

Case Il pmadpmin<ds, G-Bounds of type A. When J&
decreasese increasesg, rises andg; decreases; then,
the bound fulfillment toughens. Check Figure The
type A bound relaxation at high frequencies allows

closed loop uncertainties larger than those of the operyisturbance

loop, with a negligible feedback effect

4. CONTROLLER DESIGN STRATEGIES

expressed through specifications2,3,5 usually lead to
type B bounds;d) as a particular case of the feedback
problemk=1, robust stability constraints appear in any
control problem, but fortunately, they provide typology
A bounds that are compatible with other typologies.

The bound magnitude,, at eachg and the bound
phase rang&,, are other relevant factors in the bound
solution. Section 3 showed the influencedpfin this
case. As expected, stronggrfigures of merit lead to
more severe bounds expressing them in QFT (see
Figures 3, 4, 5).

Assuming a bound compatibility at each frequency, the
bound severity increase due to the hardeolerances
implies a more challenging loopshaping of the
controller. The following example proves it. Let's
suppose an uncertain plant family?(§)=k/(sla+1),
kO[1, 5], aO[1, 5]}. Two frequencies are evaluated, a
low frequency w=1rad/s and a high frequency
w,=100rad/s. Figure 6 shows the plant templates, with
a nominal plantP,(ja) for k=1, a=1. The feedback
requirements are: g a robust stability with
a(w)=6=1.3 for all frequencies, in particular,
w={1,100} rad/s. This ensures for the whole set of
plants that PM=45° and GM=5dB. () A robust
rejection at low-medium frequencies,
gained with a suitablé,(«w),) tolerance aty~=1 rad/s.
This imply a comparison betweedz'(cq,):O.S and
&'(w)=0.1. The first one assures a disturbance
attenuation level off{D,|<-10.5dB, and the second one

The bounds are the crux of the solution to the robustOf -20dB.

feedback problem in QFT from two different points of
view. Firstly, it is necessary to have bound
compatibility. This means that at each frequengy

there must be a non-null bound intersection amongst

the differemt robust
it must be possible to
loopshape a nominal open loop transmission,
Ly(jaw)=G(w)Py(jw), meeting the non-null bound
intersection along the set of frequencieg {

the bounds expressing
specifications. Secondly,

Gil-Martinez and Garcia-Sanz (2001) partially dealt
with the first question. They claimed that to meet multi-
objective bounds at a particular frequency
simultaneously, type A bounds of any magnityde
can coexist with type B or D bounds. If type B and D
bounds coexist, the D-bourng magnitudes should be
higher than the B-boung, magnitudes for somey
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Figure 6: Plant templates.

According to Table 4, sinced'(w)=0.1 and

relaxing d, when necessary. This is a consequence ofd(«)=0.3 are lower than 1, they imply typology B
the trade-offs in the feedback control, which harden in bounds. In keeping with Figurez4and Section 3.2, a
the case of the uncertain systems. The present papetecrease i), implies an increase in the bound height

includes some more insights in the matter.

(severity), particularly around 0° and —366¢: implies
a more stringent requirement th&hin the disturbance

After establishing that the bound typology has a strongattenuation. As a consequence of it, a larger controller
influence on the existence of a global solution, note static gain is required (see Figure 7). The loopshaping,

that: @) the bound typology of the feedback problems
k=1,2 depends exclusively on the desired behajor
(b) in contrast, fork=3,4, the bound typology is not

only determined by the desired specification, but also

by the uncertainty inherent to the system) the

feedback benefits at low and medium frequencies

Ly=G,P,, provides a controller for the weaker

specification 6'(w;)=0.3):
4

G -
)= a1

17)



The strongest performance requirement (&'(«,)=0.1)
resultsin Ly,=G,P, or L,;=G;P, with controllers:
15
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5. CONCLUSIONS

The more severe performance and stability

L . . : Sko
specifications in SISO uncertain plants were required,
the more stringent feedback trade-offs were proven.
Firstly, the bound aggressiveness was studied.
Secondly, the controller synthesis difficulties were
detailed in a practical example.



