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Abstract: This paper studies general Delayed Cellular Neural Networks (DCNNs)
with competitive-cooperative configurations. It is demonstrated how such a con-
figuration may be exploited to give a detailed characterization of the fixed point
dynamics in DCNNs. Specifically, we show that by dividing the connection weights
into inhibitory and excitatory type, it is always possible to embed a competitive-
cooperative DCNN into an augmented cooperative delay system, and thus allows for
the use of the powerful monotone dynamical system theory. In this way, we derive
several simple sufficient conditions on guaranteed trapping regions and guaranteed
componentwise (exponential) convergence of DCNNs. The results relate specific
decay rate and trajectory bounds to system parameters and are therefore of practi-
cahsigniﬁcance in designing a DCNN with desired performance. Copyright © 2002
IFAC
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1. INTRODUCTION

Since their first introduction by Chua and Yang
(1988), cellular neural networks (CNNs) have been
successfully applied in signal processing, especially
in static image treatment. These applications rely
essentially on the stable and convergent dynam-
ics of a CNN. To process moving images, Roska
and Chua (1992) introduced delayed cellular neu-
ral networks (DCNNs) that take into account time
delays in the signal transmitted among the cells.
However, time delay increases the dimensionality,
and hence complexity, of the system. Qualitative
analysis of DCNNs is much more difficult than
that of standard CNNs and has therefore attracted
considerable interests in recent years (e.g., Roska
et al, 1992; Civalleri et al, 1993; Roska et al, 1993;
Gill, 199t Cao, 1999; Arik and Tavsanoglu, 2000
Cao, 2000 Takahashi, 2000 Chu et al, 200 b and
the references the¥sh)of the studies were

based gmpunov like arguments. That is, con-
vergence in a DCNN has been characterized by the
monotonic decreasing of an auxiliary functional
on trajectories of the system. This approach is
conceptually simple and intuitive, but the perfor-

mance of a DCNN in the form of, e.g., the rate of
convergence from an initial condition to the final
state is normally difficult to assess. In a practical
design of a network system, the convergence rate
is a critical performance that should be taken into
accoutMi¢hel et al, 1989). So far, only a few
results have been established on exponential con-
vergence of DCNNs (Cao, 1999; Cao, 2000 Chu
et al, 200 b).

In this paper, we study DCNNs from a new
perspective. Namely, we view a DCNN as a
general competitive-cooperative system, and pro-
pose a decomposition method that exploits the
competitive-cooperative connectivity of the net-
workly competitive connection it is meant the
way in which a cell s firing inhibits the firing of
other cells. Conversely, cooperative connection
means the way il which a cell s firing excites the
firing of others. In a DCNN, the output of a cell
is typically characterized by a sigmoid function
(i-e., a continuous, bounded, and non-decreasing
function). The competitive-cooperative connec-
tion pattern can thus be recognized by the sign
of the weigh¢i:ive weights are due to exci-
tatory coupling, negative weights are due to in-
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hibitory coupling, while a zero weight indicates
no interaction at all. It will be demonstrated in
the sequel that by dividing the weights into pos-
itive and negative parts, one can eventually em-
bed a competitive-cooperative DCNN into an aug-
mented cooperative system. Such a system has a
significant order-preserving or monotone property
that is useful in the analysis of the original DCNN.
Similar ideas have also been employed in Chu and
Wang (1998) and Chu (2001) to investigate quali-
tative properties of delayed Hopfield networks and
discrete-time neural networks. The present work
further extends the studies to DCNNs. In par-
ticular, we will establish some detailed character-
ization on trajectory behavior of DCNNs in terms
of trapping regions and componentwise (exponen-
tial) convergence. The results enable one to design
a DCNN with a desired decay rate and trajectory
bounds and are thus of practical interest.

It should be noted that applications of mono-
tone dynamical system theory to qualitative study
of pure competitive or pure cooperative neu-
ral networks has already been addressed by sev-
eral authors (e.g., Lemmon and Vijaya Kumar,
1989; Hirsch, 1989; van den Driessche and Zou,
1998 and the references therein). Moreover, in
Hirsch (1989) and Chua and Wu (1992), a spe-
cial type of competitive-cooperative networks sat-
isfying “sign-symmetry” condition were converted
into cooperative systems of the same size. For
recent works on embedding a general competitive-
cooperative neural network systems into a larger
cooperative system we also refer to van den Driess-
che et al (2001). Besides, in Chu and Huang
(1998), a more general mixed monotone decompo-
sition method was proposed for qualitative analy-
sis of dynamical systems whose dynamics involves
both growth and decay effects. The present work
may also be related to Chu and Huang (1998).

2. THE DCNN MODEL AND SPECIFICATION

The DCNNs considered in this paper are modelled
by the following nonlinear functional differential
equation

&(t) = —Az(t) + Bs[z(t)] + Cs[z(t — 7)] +¢, (1)

where z(t) € R" is the cell’s state vector at time
t, and 7 > 0 is the time delay in the networks;
A = diagfay,...,a,] with every a; > 0 is the
relax matrix, B = [b;;] and C = [c;;] are the
n X n connection matrices associated with delay-
free and delayed feedbacks, and the entries of B, C
may be positive or negative according to excita-
tion or inhibition nature of the interconnections;
the last term c is the constant external input vec-
tor to the networks; s(z) = [s1(z1),. .-, sn(2n)]T
is a vector-valued output function and it is typi-
cally assumed in the theory of CNNs that s;(r) =
0.5[|r + 1| + |r — 1]], however, we allow here s; to
be more general sigmoid functions specified merely
by the following monotone property and the slope
condition:

0< M <k (2)

T — T2

for ry # ro € R*, where k; > 0,4 = 1,...,n. This
will make our discussion insensitive to the model
details. Clearly, the often used sigmoid functions
such as tanh z; and 0.5[|z; +1|—|z; — 1|] have such
a property.

The solution of Eq. (1) depends upon the spec-
ification of an initial condition z(8) = ¢(0), 0 €
[—7,0]. It is usually assumed that the given n vec-
tor function ¢ is continuous, though it need only
be measurable for Eq. (1) to be well defined.

The objective of this work is to study in some
details the qualitative behavior of the fixed point
dynamics of DCNN (1). By definition, for a given
constant input vector ¢, a fixed point or an equi-
librium of system (1) is a point z. € R® having
the property that

—Az. + (B+ C)s(ze) +¢=0. (3)

Since s(z) is bounded and continuous, it follows
readily from Brouwer’s fixed point theorem that
there is at least one solution . to the above equa-
tion for every constant vector ¢. Further, if z,
is globally asymptotically stable, then it is the
unique equilibrium attracting all other trajecto-
ries. In this case, to each given input vector ¢ the
network associates a unique equilibrium to which
it converges irrespectively of the initial conditions.
This establishes a one-to-one correspondence be-
tween the input space and the steady-state space,
which is a desirable property in applications of
DCNNSs to problems such as signal processing and
input patterns classification. One result to be
given later provides a global exponential conver-
gence criterion for system (1).

For convenience of discussion, we make the change
of variable z = z — z, and transform Eq. (1) to

() = —Az(t) + Bf[z(0)] + Cflz(t — 7)), (4)

where f(2) = s(z + z.) — s(z)- It is clear that f
belongs to the following sector nonlinear function
class F defined by

(i) f:(0) =0, and
(i) 0 < Zlr)=1ilra) <, for all i.

In this way, the equilibrium z, of Eq. (1) is trans-
lated into the origin, and thus z = 0 is a fixed
point of Eq. (4). Henceforth, we will proceed our
discussion on Eq. (4).

To characterize the dynamical behavior of system
(4), we consider two bounded, continuous, and dif-
ferentiable functions £(t),s(t) : [-7,4+00) — R*
with £(t) > 0, <(¢t) > 0, and define the time-
variant set

Qeo(t) ={z € R*: —£(t) <2 <<(B)}, (5)

where and throughout inequalities between vec-
tors are in componentwise sense.



Definition 1. The set Q¢ (t) is said to be a guaran-
teed trapping region for system (4) provided that
for every f € F, and for any ¢y > 0, the solution of
Eq. (4) satisfies z(t) € Q¢ (t) for ¢ > to whenever
Z(t(] + 0) S Qg’g(to + 0) for 8 € [—7', 0]

In addition, if we further impose certain contrac-
tivity on the set Q¢ ((¢) by letting

lim; o &(t) = 0 = limy—, 005 (2), (6)

then we can define a special type of convergence
properties for DCNNs.

Definition 2. System (4) is called guaranteed
componentwise convergent with respect to Q¢ ((t)
[Q¢ ¢ (t)-GCC] if Q¢ ((t) is a guaranteed trapping
region and is contractive by conditions (6). Par-
ticularly, if

E(t) = e, o(t) =P (7)

for some scalar o > 0 and two constant vectors
a, B € R* with a, 3 > 0, then the system is called
guaranteed componentwise exrponentially conver-
gent (GCECQC).

These concepts enable us to characterize the dy-
namical behavior of the DCNNs in a more detailed
manner. Moreover, the above properties are insen-
sitive to the details of the output functions (i.e.,
valid for the whole class F). This feature of ro-
bustness against change in the model details is of
basic physical significance.

In the sequel, by Q¢ ((t)-GCC and GCEC we will
also mean the guaranteed componentwise conver-
gence w.r.t. ¢ (t) and guaranteed component-
wise exponential convergence of system (4). This
would not raise any confusion according to the
context.

3. A COMPETITION-COOPERATION
DECOMPOSITION METHOD

In order to examine the above specified proper-
ties, we apply the ideas in Chu and Wang (1998)
and Chu (2001) to system (4) and develop in this
section a decomposition approach for the DCNNs.
This approach takes advantage of the competitive-
cooperative connectivity inherent in a neural net-
work in a natural way, without requiring any addi-
tional assumption (e.g., “sign-symmetry”) on the
connection weights.

Following Chu and Wang (1998) and Chu (2001),
we split the connection matrices B,C into two
parts:

B=Bt*-B-, Cc=Ct-C",
where b, = max{b;;,0} correspond to the ex-
= max{—bij,O} the in-

hibitory weights, c; ¢ and ¢;; are similarly defined.

Then system (4) can be rewritten as
2(t) = —Azx(t)+ (BT = B7)f[z(%)]
+(CF = C7) flz(t = 7)]. (8)

citatory weights and bi; =

We refer to it as a decomposition of competitive-
cooperative connectivity of network (4). This
division of the interaction into coopera-
tive/competitive parts is a reasonable requirement
on any model that purports to have some relation
to biological systems. It also leads to an intuitive
description of the temporal evolution of a neu-
ral network. According to Eq. (8) the transient
states of a network evolve under the actions of co-
operation and competition effects, and at a steady
state or an equilibrium, say z., these two opposite
actions achieve a balance:
(BT +CF)f(2) = Aze + (B~ + C7) f(2e).

Moreover, at a stable steady-state such a balance
will persist in the presence of certain extent distur-
bances in the network, whereas for an unstable one
the balance might be disrupted by an even very
small disturbance. Hence, the former correspond-
ing to a stable balance between cooperation and
competition actions in a neural network and the
latter to an unstable balance. This suggests that
one might expect to ascertain stability of a neural
network (4) by examining the temporal evolution
of the deviation from the competition-cooperation
balance of the network. We will pursue this sug-
gestion elsewhere.

Now take the symmetric transformation y = —=z.
From Eq. (8), it follows that

y(t) = —Ay(t) + BT gly(t)] + B~ fl2(t)]
+CFgly(t — )]+ C™ fl=(t —7)] (9)
4(t) = —Az(t) + B gly(t)] + B* f[=(t)]

+Cgly(t — )] + C* f[=(t — 7)](10)

where g(u) = —f(—u) € F. Accordingly, we in-
troduce the following augmented system:

d(t) = —Ad(t) + TIA[d(t)] + Eh[d(t — 7)], (11)

where
- [13]
SIHESFE 3|

- _[ec+ ¢
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Noticing the (elementwise) non-negativity of II
and E, system (11) itself is cooperative and hence
possesses the following important order-preserving
property.

Lemma 1. Let u(t) and v(t) be solutions of Eq.
(11). Then u(to +0) < v(to +0) for § € [—7,0]
implies u(t) < v(t) for t > to > 0. Moreover, if
w(t) satisfies

w(t) > —Aw(t) + Mhlw(t)] + Ehfw(t — )] (12)



for t > tg, then u(to+0) < w(to+0) for 6 € [—7,0]
implies u(t) < w(t) for t > to > 0.

This is a specialization of general results (e.g.,
Ohta, 1981; Chu et al, 2001b) on monotone dy-
namics of cooperative delay differential systems to
Eq. (11). It indicates that the states of a coopera-
tive system will retain for all time their initial rela-
tionship, a partial ordering induced by the subset
of non-negative state vectors of the state space. In
the literature, such results are also referred to as
comparison principle for delay systems.

Remark 1. Let z(t) be a solution of Eq. (4), it is
clear that p(t) = —z(t), q(t) = z(¢t) constitute a
solution to Eq. (11). That is, the evolution of sys-
tem (4) is restricted to the manifold p = —¢ in the
state space of system (11). In this way system (4)
is embedded into an augmented cooperative sys-
tem (11). On the other hand, it should be noted
that for a solution [p(t)T q(t)T]Tof system (11),
neither p(t) nor ¢(t) should satisfy Eq. (4) unless
—p(t) = q(t) [in this case z(t) = —p(t) = q(¥)
is a solution of system (4)]. In general, the two
systems may be related by the following two-sided
comparison principle.

Lemma 2. Assume for Egs. (4) and (
initial condition —p(to+0) < z(tg + 0
holds for 8 € [—7,0]. Then —p(t) < 2(t) < ¢(t) for
t>ty > 0.
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This follows readily from Egs. (9), (10), and
Lemma 1. Hence, a solution of Eq. (11) may
provide a two-sided constraint on that of Eq. (4).
This enables one to deduce qualitative properties
of system (4) from a related cooperative system
(11). In the sequel, we will apply this idea to
study the dynamical behavior of system (4).

4. TRAPPING REGIONS

We present here sufficient conditions for trapping
regions of system (4).

Theorem 1. The set Q¢ ((t) is a guaranteed trap-
ping region for system (4) if

Y(t) 2 (% — A)y(t) + EXy(t —7), £ 20, (13)

where v(t) = [€(t)T <(®)T]T, © = diag[ki, ..., kn,
Kty oo bl

Proof. From the definition of class F, it is easy
to see that h[y(t)] < ¥E~v(t). Then by notic-
ing the non-negativity of the entries of matri-
ces II, E, it follows that Ih[y(t)] < IIXv(¢) and
Eh[y(t — 7)] < EXv(t — 7). Hence, if condition
(13) holds, then we have, for ¢t > 0,

Y(t) 2 —Ay(t) + TAy ()] + Eh[y(t — 7)) (14)

Now consider an arbitrary f € F and let z(t)
be the solution of the corresponding Eq. (4) with
the initial value satisfying —&(6) < 2(6) < <(6)
for 8§ € [-7,0]. Take in Eq. (11) p(f) = &(6),
q(0) = ¢(0), and without loss of generality, let the

initial time to = 0, then by condition (14) and
Lemma 2,

—p(t) < 2(t) < q(t), t>0. (15)

Meanwhile, let u() = [p(@)T ¢@)T]T = ~(8).
From condition (14) and Lemma 1,

u(t) <7(t), =0
This and condition (15) yield
=€(t) < 2(t) <<(t), t>0.
The theorem thus follows. |

Remark 2. Assume that every b; > 0, then simi-
lar to the proof of Theorem 1 in Chu et al (2001a),
one can show that condition (13) is also necessary.

By taking £(t) and ¢(t) to be two constant vectors,
we obtain a special guaranteed trapping region.

Corollary 1. For two constant vectors «, 3 € R?
with @ > 0, 8 > 0. The set Qyp3 = {z € R* :
—a < z < B} is a guaranteed trapping region for
system (4) if

[A-(II+E)X]n >0, (16)
where n = (aT gT)T.

Remark 3. The above results depend only on the
slopes k; (i = 1,...,n) of the output function s and
thus are applicable to the whole set of F. For a
network (4) with a given sigmoid s, one can sim-
ilarly conclude that the set ¢ ((t) is a trapping
region if

V() 2 —Ay(t) + DAy ()] + By (E —7)]  (17)

for ¢ > 0, where h[y(t)] and ~(t) are specified as
in Egs. (11) and (13). Also, for the set Q4 in
Corollary 1, condition (17) now reads

An— I+ E)h(n) > 0.

Due to the boundedness of h(-), one can pick a
constant vector n > 0 to fulfill the condition. This
indicates that a DCNN always has a trapping re-
gion.

5. COMPONENTWISE CONVERGENCE

By further assuming contractivity of the set
Q¢,¢(t) in Theorem 1, we obtain the following com-
ponentwise convergence result.

Theorem 2. Suppose condition (6) is satisfied.
Then system (4) is Q¢ ¢(t)-GCC if condition (13)
holds.

Particularly, inserting special £(¢) and ¢(t) speci-
fied by Egs. (7) into condition (13) leads immedi-
ately to the following.

Theorem 3. System (4) is GCEC if there are two
constant vectors «, 8 € R with o, > 0, and a
scalar o > 0 such that

[0 —A+ (IT+e°"E)X]n <0, (18)



where 7 = (a” AT)T and I is an identity matrix
with appropriate dimensions. It is easily verifiable
that this condition can be rewritten as

foo{T A + (T + " E)S]T} > 0 > 0,

where I' = diag[ay, ..., @n, b1, -, On] and poo(+) is
the infinity matrix measure defined by peo (M) =
maxy <i<e{mii + 34 Imij|} for a matrix M =

[mijlexe-

This result relates the specific exponential decay
rate and trajectory bound to system parameters
and thereby provides a way to design a DCNN
with desired converging performance. These pa-
rameters only involve the connection weights and
the cell gains, regardless of the exact features of
the cells. This merit facilitates application of the
criterion in a wide range.

Remark 4. Observe that condition (18) remains
valid with ka, k3 in place of a, § for any constant
K > 0. Meanwhile, given an arbitrary initial con-
dition ¢(f) of system (4), one can always pick a
K > Osuch that —ka < p(0) < kg for 6 € [—7,0].
Therefore by Theorem 3,

—kae 7t < 2(t) < kBe 7, t>0. (19)

This shows that condition (18) actually gives a
global exponential convergence criterion for net-
work (4), and Eq. (19) provides a trajectory es-
timate.

Next, we make some comments on the symmet-
rical case @ = (3. In this case, condition (18) is
reduced to

[0l — A+ (|B|+€°7|C|)K]a <0, (20)

where |B| = [|b;]] = B* + B7,|C| = [ley]] =
Ct +C~. Clearly, it is equivalent to the existence
of a constant vector a > 0 such that

[A—(IB| +|C|)K]a > 0. (21)

Noticing the non-positivity of every off-diagonal
entries of matrix A — (|B| 4+ |C|)K, condition (21)
is in turn tantamount to the matrix A — (|B| +
|C])K being an M-matrix (Berman and Plem-
mons, 1979). Further, by the properties of M-
matrices, it is also equivalent to

hll hli
Lo >0, i=1.,m,  (22)
hiv -+ hi
where
oo — 4 @ = Fi(|bi| +|eal), i=7;
Y —k;([bij| + leiz]), i # 7.

Remark 5. Condition (20) has been obtained in
Cao (1999) using Lyapunov method. Also, let-
ting each a; = 1 in (21) yields a result similar
to the “dominant template” condition presented

in Roska et al (1993) by means of Lyapunov-
Razumikhin method. Nevertheless, the present
results provide, in addition to global exponential
convergence, more subtle estimate on trajectory
bounds and decay rates for DCNNSs.

Observe that, although (18), (20), (21), and (22)
are all sufficient GCEC conditions, the trajectory
behavior that they can yield for a DCNN may be
quite different. The first two conditions can guar-
antee a network to be convergent with a prescribed
exponential decay rate and trajectory bounds, de-
scribed by o and «, 3, respectively, while the last
two only ensure exponential convergence in a net-
work, saying nothing about decay rate explicitly
(condition (21) also provides an estimate of the
trajectory bound). On the other hand, it should
be noted that conditions (21) and (22) are delay
independent. This is of practical significance in
the case where time delays exist but their magni-
tudes could not be evaluated accurately. In ad-
dition note that condition (22) involves no free
parameters and can be checked directly according
to the system under consideration.

Finally, we point out that, from an asymmetric
exponential constraint (7), one can always get a
symmetric one. Indeed, rewrite condition (18) as

[0l — A+ (Bt +e"CH)K]a
+(B~ +e“"C7)KB <0,

[cl — A+ (Bt +e’"CH)K|p
+(B~ +e°"C7)Ka <0.

Adding them gives
[0I = A+ (IB| +e°7|C])K]p <0, (23)

where p = a + 8 > 0. By referring to condition
(20), this corresponds to a symmetric constraint
on the state of system (4). Therefore, the exis-
tence of a 2n-dimensional positive vector n sat-
isfying condition (18) is equivalent to that of an
n-dimensional positive vector p satisfying condi-
tion (23). Hence, as far as for qualitatively ascer-
taining componentwise exponential convergence of
system (4), one may simply check the symmetric
case for convenience, without loss of any general-
ity. Of course, it is evident that an asymmetric
constraint may give more accurate trajectory be-
havior than does a symmetric one.

Ezample. To illustrate the above results, we con-
sider a DCNN (1) with n identical neurons that
satisfy condition (2) with the maximum slope
k; = 1. Also let A = I (the identity matrix) and
B, C are constant matrices to be specified. Then,
as stated above, corresponding to a given constant
input vector ¢, the network has at least one equi-
librium z.. Further, by Theorem 3 (for simplicity,
here we only consider symmetric case and set each
a; = 1), condition

n
o =1+ (Iby| +eleyl) 0, i =1,..,m,
7j=1



ensures the system to be convergent to . in terms
of
|zi(t) — ze| < K™, £ >0,

whenever |z;(0)] < k (8 € [-7,0]) with kK > 0 a
constant depending on the initial condition x;(6),
i =1,...,n. Moreover, according to Remark 4, the
convergence is in fact global and z. is uniquely
determined by the input c¢. This ensures a consis-
tent response in the network to input signals, and
precludes the possibility of sustained oscillation or
chaos in the network. If one is merely interested
in confirming GCEC or global exponential conver-
gence of the system, it may be convenient to use
an even simpler criterion

n

> (il +leish) < 1,

Jj=1

according to condition (21) with each a; = 1.

6. CONCLUSION

We have developed a decomposition method
for the study of the fixed point dynamics in
competitive-cooperative DCNNs. The method
consists in embedding a competitive-cooperative
DCNN into an augmented cooperative delay sys-
tem through dividing the connection weights into
inhibitory and excitatory types. This allows for
the use of the powerful theory of monotone dy-
namical systems, and the explicitly division of the
connectivity into the two different types offers a
higher potential for relating formal neural net-
work models to neurophysiology. Simple condi-
tions on guaranteed trapping regions and guar-
anteed componentwise (exponential) convergence
have been established using the method, which re-
late the system parameters to desired convergent
performance, and are therefore of practical signif-
icance in applications. The results show the effi-
ciency of the proposed method. Extension of the
method to neural networks with distributed delays
is straightforward.
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