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Abstract: A systematic approach for the on-line estimation of the non measured component
concentrations and the reaction rates inside chemical and biochemical reactors is presented.
Two appealing features of the presented approach are worth to be mentioned. Firstly, the
estimators of the reaction rates are easy to implement and in particular to calibrate. Secondly,
the estimation of these as well as that of the non measured component concentrations does
not necessitate any change of coordinates and it fully takes advantage of the process balance
model. Simulation results related to a biotechnological process are given in order to illustrate
the performances of the proposed estimators.
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1. INTRODUCTION

The lack of cheap and reliable instrumentation for the
on-line measurement of the relevant variables in many
processes de£nitely constitutes a serious obstacle for
the development of the latter. One way to overcome
this problem is to use “software sensors”. Over the last
two decades, there has been a growing and widespread
development of software sensors for the estimation
of component concentrations and reaction rates in-
side chemical reactors (see e.g. (Bonvin et al., 1989),
(Schuler and Schmidt, 1992), (Farza et al., 1999))
and inside biochemical reactors (see e.g. (Shimizu et
al., 1989), (Wang and Stephanopoulos, 1984), (Bastin
and Dochain, 1990), (Farza et al., 1998)). The estima-

tion of the component concentrations and in particular
that of the reaction rates is interesting since these rates
are very complex functions of the operating conditions
and the state of the process.

Many works in the development of software sensors
for chemical and biochemical reactors are based on an
Extended Kalman Filter (EKF) approach which gener-
ally leads to complex non-linear algorithms. Moreover,
it is well known that the EKF may give biased or
even diverging estimates if it is not well initialized.
Another approach for developing software sensors for
bioreactors is that proposed by Bastin and Dochain
(Bastin and Dochain, 1990) which consists of estimat-
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ing the component concentrations using a so-called
asymptotic observer and the reaction rates using an
observer-based estimator. Many improvements of the
observer-based estimator have been proposed later in
order to facilitate the choice of the tuning parameters
((Oliveira et al., 1996), (Perrier et al., 2000)).

In (Farza et al., 1998), the authors proposed a simple
nonlinear observer for the on-line estimation of the
reaction rates. In these works, the authors assumed that
all the states (component concentrations) were mea-
sured. However, only a part of these measurements are
used to update the reaction rates whereas the remain-
ing measurements have been treated as known sig-
nals and were simply injected into the process model.
Moreover, no algorithm was given to estimate the non-
measured component concentrations.

In the present paper, we £rstly propose nonlinear ob-
servers for the estimation of the reaction rates, in
chemical and biochemical reactors, from the measure-
ment of some component concentrations (plus the tem-
perature if energy balance is considered). Then, we
show that the provided estimates can be used in order
to design asymptotic observers for the estimation of
the non measured component concentrations.

An outline of this paper is as follows: in the next
section, we propose an observer synthesis for a class
of nonlinear systems including biochemical process
models. In section 3, we show that the proposed ob-
server can be used for the estimation of the reaction
rates in biochemical reactors. We also show that the
so-provided reaction rate estimates can be used for
the on-line estimation of the non-measured compo-
nent concentrations. Section 4 is devoted to simulation
where the performances of the proposed estimator are
demonstrated.

2. OBSERVER SYNTHESIS FOR A CLASS OF
NONLINEAR SYSTEMS

We consider multi-output nonlinear systems which can
be described as follows:

{

ẋ = F (s, x)x+G(u, s, x) + ε(t)
y = Cx

(1)

where

x =











x(1)

x(2)

...
x(q)











∈ IRn with x(k) ∈ IRnk , k = 1, . . . , q

and p = n1 ≥ n2 ≥ . . . ≥ nq ,
q
∑

k=1

nk = n; the input

u ∈ U is a compact subset of IRm, the output y ∈ IRp,
s(t) is a known signal. The functions G and F assume
triangular forms, i.e.

G(u, s, x) =













G(1)(u, s, x(1))

G(2)(u, s, x(1), x(2))
...

G(q−1)(u, s, x(1), . . . , x(q−1))

G(q)(u, s, x)













with G(k)(u, s, x) ∈ IRnk , k = 1, . . . , q;

F (s, x) =





















0 F1(s, x(1)) 0 . . . 0

0 0 F2(s, x(1), x(2))
. . .

...
...

. . . 0

0
. . . 0 Fq−1(s, x)

0 . . . . . . 0





















is block diagonal and each Fk, k = 1, . . . , q − 1,
denotes a nk × nk+1 rectangular matrix;

ε(t) =









0
...
0

ε(q)









with ε(q) =











ε
(q)
1

ε
(q)
2
...

ε
(q)
nq











∈ IRnq

and each ε
(q)
i , i = 1, . . . , nq is an unknown bounded

real-valued function which may depend on x, s, u,
uncertain parameters, etc.; C = [Ip, 0, . . . , 0] where
Ip is the p× p identity matrix.

Note that the class of systems (1) is more general
than those we considered in previous works ((Farza et
al., 1998; Busawon et al., 1998)) since the matrices Fi
are rectangular and are not assumed to be square.
The observation problem we are concerned with is
well posed if the following set of assumptions holds:
(A1) There exist a set of controls U ∈ C∞(U, IRm) and
two compact sets K1 ⊂ K2 such that every trajectory
x(t) associated to any u ∈ U and issued from K1 lies
in K2. This means, in particular, that we only deal with
bounded inputs and bounded trajectories.
(A2) There exist two positive constants α, β such that
for every k ∈ 1, . . . , q − 1, ∀u ∈ IRm, ∀x ∈ IRn,
∀t ≥ 0,

0 < α2Ink+1 ≤ Fk(s, x)
TFk(s, x) ≤ β2Ink+1

where Ink+1 is the (nk+1)×(nk+1) identity matrix.
(A3) The function ε is bounded.
(A4) The signal s(t) and its time derivative ṡ(t) are
bounded.
(A5) The functions G(i)(u, s, x), i = 1, . . . , q are
global Lipschitz with respect to x uniformly in u and
s.
(A6) The functions Fi(s, x),i = 1, . . . , q−1 are global
Lipschitz with respect to x uniformly in u.

Before giving our main theorem, we shall make some
remarks and introduce notations used hereafter.
(1) For every ξ ∈ IRn, t ≥ 0, let Λ(s(t), ξ) be the
block diagonal matrix de£ned by



Λ(s(t), ξ) = diag [In1
, F1(s(t), ξ),

F1(s(t), ξ)F2(s(t), ξ), . . . ,

q−1
∏

i=1

Fi(s(t), ξ)

]

(2)

where In1
denotes the n1 × n1 identity matrix.

By Assumption (A2), Λ(s(t), ξ) is left invertible. In-
deed, its left-inverse shall be denoted by Λ+(s(t), ξ)
in the sequel.
(2) Let S be the unique solution of the algebraic Lya-
punov equation :

S +ATS + SA− CTC = 0 (3)

where A =



















0 In1
0 . . . 0

...
. . . In1

. . .
...

...
. . .

. . . 0
...

. . . In1

0 . . . . . . 0



















is a n1q×n1q square matrix and C = [In1
, 0 . . . , 0] is

n1 × n1q. It can be shown that the explicit solution of
(3) is given by

S(i, j) = (−1)i+jCj−1
i+j−2In1

, for 1 ≤ i, j ≤ q

where Ci
j =

j!

i!(j − i)!
and that S is symmetric pos-

itive de£nite. Moreover, Cholesky’s decomposition of
S is given by S = UTU where the upper triangular
matrix U is given by:

U(i, j) = (−1)i+jCi−1
j−1In1

, for 1 ≤ i ≤ j ≤ q

and U−1(i, j) =Ci−1
j−1In1

, for 1 ≤ i ≤ j ≤ q

3) Set S̄(s(t), ξ) = ΛT (s(t), ξ)SΛ(s(t), ξ) and C̄ =
CΛ(s(t), ξ). On one hand, it is easy to see that S̄ is
an invertible square matrix and one can show that:
S̄−1 = Λ+U−1ΛΛ+(U−1)T (Λ+)T

On the other hand, we note that C̄ is constant:

C̄ = [In1
, 0n1×n2

, 0n1×n3
, . . . , 0n1×nq−1

] (4)

where 0n1×nk denotes the n1 × nk null matrix, k =
2, . . . , q − 1.
Our candidate observer for system (1) under assump-
tions (A1) to (A6) is given by :

˙̂x = F (s(t), x̂)x̂+G(u, s(t), x̂)

− θ∆θS̄(s(t), x̂)
−1C̄T (C̄x̂− y)

(5)

where S̄ and C̄ are given above and
∆θ = diag

[

In1
, θIn2

, θ2In3
, . . . , θq−1Inq

]

for some
θ > 0 and Ink denotes the nk × nk identity matrix.

We now state the following :
Theorem. Consider system (1) under assumptions
(A1) to (A6) and system (5). Then, one has:

∃θ0 > 0; ∀θ > θ0; ∃λθ > 0; ∃µθ > 0; ∃Mθ > 0;

∀u ∈ U ; ∀x̂(0) ∈ Rn; one has :

‖x̂(t)− x(t)‖ ≤ λθe
−µθt‖x̂(0)− x(0)‖+Mθδ

where δ is the upper bound of ‖ε‖. Moreover, one has
lim
θ→∞

µθ = +∞ and lim
θ→∞

Mθ = 0.

Remark: Note, that for ε(t) = 0, the convergence of
the estimation error is exponential. In the case where
‖ε(t)‖ 6= 0 but bounded by δ, the asymptotic esti-
mation error is bounded and the corresponding upper
bound is as small as δ. Moreover, this bound can be
made as small as desired by choosing values of θ high
enough. It is worth noticing that the scalar θ has to be
speci£ed bearing in mind the unavoidable compromise
between fast convergence and noise sensitivity.

3. APPLICATION TO BIOREACTORS AND
CHEMICAL REACTORS

We will illustrate throughout this section the use of the
above observers for the on-line estimation of the reac-
tion rates and component concentrations in chemical
and biochemical reactors. Indeed, the mass and energy
balance model of reaction systems, including chemical
and biochemical reactors, can be written as follows
(Farza et al., 1999):

ξ̇ = KHα−Dξ +W (6)

where ξ = (ξ1, . . . , ξN )
T is the vector of process

component concentrations (g/l) (plus the temperature
(K) if the energy balance is considered); K is the
N × M stoichiometric (or yield coef£cient) matrix;
H is a M × M diagonal matrix and each of its di-
agonal terms corresponds to a subset (possibly all)
of the measured component concentrations; the vector
α = (α1, . . . , αM )

T is the vector of (speci£c) reaction
rates (g/l/h), D is the N×N dilution rate matrix (h−1)
and £nally W is the in¤ow/out¤ow rate vector (g/l/h).

As stated before, the modelling of the (speci£c) reac-
tion rates αj’s is a dif£cult and hazardous task. Thus,
they will be considered as completely unknown time-
varying parameters which have to be estimated. How-
ever, as no balances are available for these kinetics,
we will assume that their second time derivatives are
described by unknown and bounded functions. At a
£rst glance, such a stance of modelling might be sur-
prising since most of works related to the estimation of
the reaction rates did not take into account the second
time derivatives. Indeed, the most adopted hypothesis
consists in assuming the boundedness of the reaction
rate dynamics (£rst derivatives). Nevertheless, the sec-
ond derivatives have been considered in some esti-
mation algorithms (Wang and Stephanopoulos, 1984),
(Takiguchi et al., 1997). In our work, the motivation
behind the consideration of the second derivatives lies
in the fact that the upper bounds of these derivatives
are generally much smaller than those of the £rst ones.



By considering the second time derivatives, we ob-
tained a model where the uncertain term correspond
to these functions and not to the £rst time derivatives.
This allows to obtain more accurate estimates since the
estimation error related to the observer we propose is
bounded by the upper bound of the unknown term, as
stated in the theorem.
In order to estimate all reaction rates and all non mea-
sured component concentrations, the following hy-
pothesis are required:
(C1) K, D, W are known.
(C2) Suppose that ξ is partitioned into the set of mea-
sured variables ξ(1) and into the set of non measured

variables ξ(2) as follows: ξ =

(

ξ(1)

ξ(2)

)

and accord-

ingly, K =

(

K(1)

K(2)

)

, then we have rank(K(1)) =

rank(K) = M .
As stated before, as no balances are available for the
reactions rates, the time derivatives of their dynamics
will be supposed bounded. Thus, system (6) can be
decomposed into two subsystems which respectively
account for the measured and non measured compo-
nent concentrations :















ξ̇(1) = K(1)H(ξ(1))α(t)−D(1)ξ(1) +W (1)

α̇ = η(t)
η̇ = ε(t)

y = ξ(1) and

(7)

ξ̇(2) = −D(2)ξ(2) +K(2)H(ξ(1))α(t) +W (2) (8)

where

(

D(1)

D(2)

)

and

(

W (1)

W (2)

)

respectively denote the

partitions of D and W induced by the partition of K

under the formK =

(

K(1)

K(2)

)

; η is α’s time derivative

and ε is an unknown bounded function which may
depend on the concentrations, the temperature, the
inputs, the parameter uncertainties, etc.
Now, it is easy to see that subsystem (7) is under

form (1) with : x(1)
∆
= ξ(1); x(2)

∆
= α and x(3)

∆
=

η. Moreover, one can easily show that assumptions
(A1) to (A6) are satis£ed by (7) (see e.g. (Farza et
al., 1999)). As a result, a nonlinear observer of the
form (5) can be used for the on-line estimation of the
reaction rates. This observer takes the following form:



































˙̂
ξ(1) = K(1)H

(

ξ̂(1)
)

α̂−D(1)ξ̂(1) +W (1)

− 3θ

(

IM + 2K(1)
(

K(1)
)+
)

(ξ̂(1) − ξ(1))

˙̂α = η̂ − 3θ2H−1
(

K(1)
)+

(ξ̂(1) − ξ(1))

˙̂η = −θ3H−1
(

K(1)
)+

(ξ̂(1) − ξ(1))

(9)

The so-estimated reaction rates can now be used in
order to obtain on-line estimates, ξ̂(2), of the non

measured component concentrations, ξ(2). Indeed, it
suf£ces to replace in equation (8) the vector of un-
known reactions rates α by its estimate, α̂, provided
by observer (9). The resulting system is:

˙̂
ξ(2) = −D(2)(t)ξ̂(2) +K(2)H(ξ(1))α̂+W (2)(10)

Now, it is easy to see that the convergence of (10)
is guaranteed as soon as the (time-varying) matrix
(−D(2)) is stable.

4. EXAMPLE

In this section, the performances of the proposed ob-
server are illustrated through a microbial culture which
involves a single biomass X growing on a single sub-
strate S and yielding two £nal products P1 and P2. The
bioprocess is supposed to be continuous with a scalar
dilution rate D and an input substrate concentration
Sin. It should be appreciated that the example was cho-
sen mainly for its simplicity and illustrative properties.
Remember that the theory presented in this paper can
be applied to the large class of biochemical processes
described by the general model (6). The mathematical
dynamical model of the process is :















Ṡ = −k1r1 − k2r2 +D(Sin − S)

Ṗ1 = r2 −DP1
Ẋ = r1 −DX

Ṗ2 = k3r2 −DP2

(11)

where r1 and r2 respectively denote the growth and
the biosynthesis reaction rates; k1, k2 and k3 are yield
coef£cients. We suppose that the substrate S and the
product P1 are measured and our objective consists
in estimating the reaction rates r1 and r2 as well as
the concentrations X and P2. This has been achieved
using an observer of the form (9) and (10) which
specialized as follows:







































































˙̂
S = −k1r̂1 − k2r̂2 +D(Sin − Ŝ)− 3θ(Ŝ − S)
˙̂
P1 = r̂2 −DP̂1 − 3θ(P̂ − P )

r̂1 = η̂1 − 3θ2(P̂ − P )

r̂2 = η̂2 + 3
θ2

k2

(

(P̂ − P ) + k1(Ŝ − S)
)

˙̂η1 = −θ
3(P̂ − P )

˙̂η2 =
θ3

k2

(

(P̂ − P ) + k1(Ŝ − S)
)

˙̂
X = r̂1 −DX̂
˙̂
P2 = k3r̂2 −DP̂2

(12)

In order to illustrate the observer performances, we
have compared corresponding results with data issued
from model simulation. The following kinetic expres-
sions have been used for simulation purposes:

















r1 = µmax
SX

(KS1 + S + S2

KI
)

r2 = νmax
SX

(KS2 + S)

KP1

(KP1
+ P1)

(13)

where µmax, νmax, KS1 and KS2 are constant kinetic
parameters. The model’s simulation was performed
under the following initial conditions:
X(0) = 0.5g/l, S(0) = 15g/l, P1(0) = 0.25g/l,
P2(0) = 2g/l
The dilution rate varies as a trapezoidal signal from 0.1
to 0.2 l/h and the parameter values used in simulation
are :
k1 = 5.0, k2 = 10, k3 = 4, µmax = 0.25h−1,
KS1

= 2g/l, KI = 91(g/l)2, νmax = 0.1h−1,
KS2 = 1.84g/l, KP1

= 10g/l, Sin = 20g/l
The estimator’s simulation was performed under simi-
lar operating conditions as the model and the value of
θ was equal to 1.5.
Before being used by the estimator, the measurements
of S and P1 have been corrupted by an additive noisy
signal as shown on £gures 1 and 2. Estimation results
are reported in £gures 3, 4, 5 and 6. We remark that
the estimates of r1 and r2 as well as those of X and P2
quickly converge to the (true) simulated time evolu-
tions. These results clearly show that the reaction rates
can be accurately estimated by the proposed estima-
tors even when these parameters are subject to abrupt
variations. We also note the good agreement between
estimates of X and P2 and their values issued from
model simulation. Moreover, these estimates clearly
highlight the good behaviour of the proposed approach
in dealing with noise rejection.
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Fig. 1. Noisy measurements of S
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Fig. 2. Noisy measurements of P1
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Fig. 3. Estimated and simulated r1
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Fig. 4. Estimated and simulated r2
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Fig. 5. Estimated and simulated X
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Fig. 6. Estimated and simulated P2



Conclusion : Simple nonlinear observers for the on-
line estimation of the reaction rates and the non mea-
sured component concentrations inside biochemical
reactors have been presented. The reaction rates are
updated through nonlinear observers whose imple-
mentation and in particular calibration is simple and
easy to carry out. The so-obtained estimates are then
exploited to synthesize an asymptotic observer to on-
line estimate the non measured component concen-
trations. Simulation results have been given and they
have demonstrated the good performances of the given
estimators in coping with nonlinearities and parameter
uncertainties in chemical and biochemical systems.
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APPENDIX
The proof is similar to that given in (Busawon et
al., 1998). Nevertheless, the submatrices Fi in the
matrix F (and Λ) are here assumed to be rectangular
and not necessary square as in (Busawon et al., 1998).
The main outlines of the proof are given hereafter.
Since Λ(ẑ, s)F (s, x̂) = AΛ(s, x̂), one can show that:
θS̄ + FT S̄ + S̄F − C̄T C̄ = 0.
where S̄(x̂, s) = ΛT (x̂, s)SΛ(x̂, s) and C̄ is the
constant matrix de£ned by (4).
Set e(t) = x̂(t)− x(t)and ē = ∆−1

θ e, then :

˙̄e= θ
(

F (s, x̂)− S̄(s, x̂)−1C̄T C̄
)

ē

+∆−1
θ (F (s, x̂)x− F (s, x)x)

+∆−1
θ (G(u, s, x̂)−G(u, s, x))−∆−1

θ ε(t)

Consider the quadratic function V (ē) = ēT S̄(s, x̂)ē,
then

V̇ = 2ēT S̄(s, x̂) ˙̄e+ 2ēTΛTSΛ̇ē

= θ
(

2ēT S̄(s, x̂)F (s, x̂)ē− 2ēT C̄T C̄ē
)

+ 2ēT S̄(s, x̂)∆−1
θ (F (s, x̂)z − F (s, x)x)

+ 2ēT S̄(s, x̂)∆−1
θ (G(u, s, x̂)−G(u, s, x))

+ 2ēTΛTSΛ̇ē− 2ēT S̄(s, x̂)∆−1
θ ε(t)

≤−θV − θ‖C̄ē‖2

+ 2‖S̄(s, x̂)ē‖‖∆−1
θ (F (s, x̂)x− F (s, x)x) ‖

+ 2‖S̄(s, x̂)ē‖‖∆−1
θ (G(u, s, x̂)−G(u, s, x))‖

+ 2ēTΛTSΛ̇ē+ 2‖S̄(s, x̂)ē‖
δ

θq−1

Now, assume that θ ≥ 1, then, because of the triangu-
lar structure and the Lipschitz assumption on G and F ,
one can show that :

‖∆−1
θ (G(u, s, x̂)−G(u, s, x)) ‖ ≤ ζ1‖ē‖

and ‖∆−1
θ (F (s, x̂)x− F (s, x)x) ‖ ≤ ζ2‖ē‖

for some constants ζ1 and ζ2 which do not depend on
θ (see (Gauthier et al., 1992)).
Hence, V̇ ≤ −θV + c1V + c2δ

θk0−1

for some positive constants c1 and c2.
Now taking θ0 = max {1, c1} and θ > θ0, we obtain :

‖ē(t)‖ ≤ σ(S)
κ̆

κ
exp

[

−

(

θ − c1
2

)

t

]

‖ē(0)‖

+
c2δ

θq−1(θ − c1)κ
√

λmin(S)
(14)

To end the proof, it suf£ces to see that for θ ≥ 1,

we have: ‖e(t)‖ ≤ ‖ē(t)‖ ≤ θq−1‖e(t)‖


