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Abstract: The laminar cooling of hot slabs is a distributed-parameter system
characterized by time varying, nonlinear factors and physical difficulties in continuous
temperature measurement. The process operation is classified into operating points
according to steel No., thickness and target temperature. The moving slab is divided into
segments upon which the control is to be implemented. The technology of soft sensing is
incorporated into the temperature prediction model of the process that is adapted online to
find the temperature profile through thickness, which will be used for online error
correction in closed-loop control. Industrial experiments have shown the effectiveness of
the proposed method.  Copyright © 2002 IFAC
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1. INTRODUCTION

The laminar cooling of hot slabs is a key process in
hot rolling that not only shortens the cooling time of
the slab but also improves the quality of the finished
product (Groch, et al., 1990). The process represents
a typical distributed parameter system described by
partial differential equations with the thermal field of
the slab varying in terms of both time and position
(James, et al., 1993). Furthermore, the heat transfer
mechanism of the process is complicated by time
varying and strong nonlinear factors as well (Dietmar,
et al., 1998)

The cooling process is traditionally controlled by
DCS. The complex process requires human
supervision on site to optimize the control operation
from time to time by adjusting the control set points
(Cui, 2001).

1 This work was supported by the Chinese National Natural
Science Foundation No. 60074116.

However, this makes the quality control of the
process affected by unreliable human factors. Since
many information of the cooling process can not be
measured online, it is very difficult to apply
conventional feedback control on the supervision
level (Guan, et al., 1997). It is noted that most
existing control methods only apply to thinner slabs
and the performance quickly deteriorates when the
slab becomes thicker, which causes economic losses
to manufacturers (Guan, et al 1997).

Because the slab temperature can not be measured
continuously, a physical model of the cooling process
is set up using the technique of soft sensing and finite
discretization to predict the through-thickness and
lengthwise temperature distribution in the entire
cooling process (Van, 1993) and for feedback control.
In addition, nonlinear control and adaptive control
techniques are combined in this paper to form an
intelligent optimization control framework for the
laminar cooling system.
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2. PROCESS ANALYSIS AND MODELING

2.1 Process description

The general layout for the laminar cooling process is
shown in Fig.1 with top headers and bottom sprays.
After leaving the finishing mill, the slab is cooled
with water on the runout table in the cooling zone
extending from EMP to HMP. EMP is the entry point
to the cooling zone where temperature and thickness
of the slab are measured. HMP is the point where the
temperature of the slab is measured before being
coiled at the downcoiler.

The whole cooling process can be classified into air-
cooling, which is uncontrollable, and water-cooling,
which is further divided into the main cooling zone
and the fine cooling zone separated by FBP.
Nineteen banks of four headers are installed on the
runout table, with each header as one cooling unit
controlled by a valve. Each header has a fixed flow
rate and only the number of active headers or cooling
length can be manipulated. The functional model of
the process is shown in Fig.2 .

FM EMP HMPFBP

Main cooling zone Fine cooling zone

bank1 bank2 bank17

coiler
runout table

top header
slab speed v

Te
d

Tcm

bottom spray

bank18 bank19

roller

Fig. 1. Layout of the laminar cooling process on the
runout table.
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Fig.2 Functional model of the cooling process

Where: TH top start header, BH bottom start header, d
thickness of slab, v runout table speed, Te entry

temperature, Tc target coiling temperature, Tcc cooling
curve, Tw water temperature, N active headers, π
spraying pattern, Tcm coiling temperature measurement,
Ωs disturbances (Tenv , w, l and a). l length of slab, w
width of slab, a  runout table acceleration, Tenv
environment temperature.

The laminar cooling process is a complex system
influenced by many factors including the thickness
and shape of the slab, runout table velocity,
environment and water temperature. The objective of
laminar cooling is to maintain the desired
temperature throughout the slab and achieve a

constant cooling rate to ensure consistent physical
properties within the slab.

The control is implemented by switching on or off
the sprays in the cooling process and adjusting the
number and distributions of the water sprays. The
cooling rate is controlled through use of different
spraying patterns for the headers. There are 4 major
spraying patterns of water cooling as shown in table
1.

Table 1 Spraying configuration.

Spraying pattern Header configuration
A intensive pattern   1111
B 3/4 staggered pattern   1110
C 2/4 staggered pattern   1010
D 1/4 staggered pattern   1000

Note: ”1” indicates header is open,”0” indicates
closed.

2.2 Modeling

The complexity of the cooling process makes the
temperature distribution of the slab depend on both
time and location, and the physical parameters of the
slab vary with temperature. For a good performance,
each slab has to be classified into segments. Each
segment is controlled to have the same desired
temperature throughout its thickness.

Heat conduction dynamics at each segment, for
example the kth segment, of the slab during the
cooling process is described by the following partial
differential equation (Guan, et al., 1997):
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where a: the thermal diffusivity of the slab; λ:
thermal conductivity of the slab; αk,i: heat transfer
coefficient of segment k; Twi: coolant temperature
(i=0- top surface; i=M- bottom surface); h: thickness
of segment k; xk: lengthwise coordinate of segment k
at time tk0; Tk(y,t(k)): the through-thickness
temperatures of segment k at time t(k).

Through finite discretization the above equations can
be implemented. A three-dimensional dynamic
equation is developed in (2) to take into account both
the through-thickness and lengthwise temperature
distribution over time. Thus, the through-thickness
temperatures can be predicted for any point in the



slab at any time and at any specified location along
the runout table (Guan, et al., 1997).
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where j: thickness node; n: time node; ∆Γ: time step
size; ∆y: thickness step; Tw,i: water coolant
temperature; Tj(n): temperature of thickness node j
during the cooling time at nth time step;
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aj: thermal diffusivity of the slab at node j; αi: heat
transfer coefficient; λi: thermal conductivity.

The discussion of the various parameters in the
physical model (2) is given below:

Heat transfer coefficient. The heat transfer
coefficient for water-cooling has to do with runout
table velocity, slab thickness, surface temperature of
the slab, water temperature, water flow rate and
random factors. In addition, the significant heat
evolved during the phase transformation from
austenitic (γ-Fe) to ferritic (α-Fe) due to the water
cooling also has a dramatic impact on the heat
transfer coefficient but can not be quantified. Since
air-cooling is uncontrollable, only water cooling is
considered for direct control in this paper.

A common approach to modelling the heat transfer
coefficient is to use various functions whose
parameters are to be determined through practical
identification experiments. After the analysis of large
amounts of data, an empirical expression is
developed of the heat transfer coefficient as the
function of the speed of the runout table, thickness of
the slab and surface temperature of the slab:
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where vi , di and Tei are speed of the runout table,
thickness and surface temperature of the slab
segment at the specified cooling unit respectively;
vop,i , dop,i and Teop,i are speed of the runout table,
thickness and surface temperature of the slab
segment at workpoints respectively. k, γ1 ,γ2 and γ3
are values that define the effect of runout table speed,
segment thickness and segment surface temperature
on the heat transfer coefficient. An initial estimate of
k, γ1 ,γ2 and γ3 are performed offline and they are
adapted online.

Thermal diffusivity. Thermal diffusivity is related to
slab material and temperature and is represented by
the empirical curve as shown in Fig.3.
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Fig.3 Thermal diffusivity curve

Thermal conductivity. Thermal conductivity is
connected to the material and temperature of the slab
and changes during the cooling process. Researches
have shown that it is linearly related to the
temperature of the slab to some extent. Based on the
analysis of large amounts of real time data collected
from the process it has been found that the speed of
the slab has a major influence on the cooling process.
This influence is integrated into thermal conductivity
in the following form:
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where ci, either a constant or a function, is the speed
coefficient, vop, i is the base speed, Ti is temperature of
the slab segment under the current cooling unit
(Celsius) and ci and vop,i are related  to the grade,
thickness and speed of the slab segment.

3. CONTROL METHODOLOGY

Due to the uncontrollable dynamics and other
boundary variations as depicted in Fig.2, the cooling
performance is not very satisfactory. Closed-loop
feedback control at the supervision level is one
feasible solution to optimize the cooling performance
without human intervention. However, it is
impossible to measure the coiling temperature online
during the laminar cooling. Without measurement, it
is impossible to do feedback control. To overcome
this problem, the temperature prediction error is used
in online adaptation to provide closed-loop control.
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Fig. 4  Framework for the intelligent optimization of
cooling control



p workpoint values; Tc target coiling temperature
( ); H slab grade; π spraying pattern; Tt(k)
model predicted temperature of segment k;

The process can be linearized around the nominal
operating points to simplify the dynamic
optimization. The real operating point is thus
composed of the nominal operating point plus an
adaptation around that point. Based on this idea, the
control methodology can be developed as shown in
Fig.4 to have two major mechanisms for setpoint
optimization. The setup model is to provide a
nominal operating point for DCS or controllers at the
lower level; while feedforward control is to provide
the required adaptation around the nominal point to
compensate for the influence from the uncontrollable
dynamics and boundary variations.

Because of the time-varying temperature distribution
along both the length and thickness of the slab, it is
sampled into segments at a fixed time interval, or
control cycle. The slab is “caught” the instant it
threads EMP and from that moment on it is tracked
all the way to the downcoiler with respect to its
speed and position.

Intelligent optimisation. The system is capable of
self-learning which includes adaptive algorithm for
feedforward control and model learning. The self-
learning happens at inter-segment level within the
same slab and inter-slab level according to steel
grade, size and cooling strategy. A long-term
learning for certain material categories is also
performed. Each time a segment head reaches the
pyrometer at HMP, the real cooling run of that
segment is used to compare model output with reality.

Cooling strategy.  Because there is only one process
model in (2), it is impossible to determine the
number of active headers N without knowledge of
other parameters. The top and bottom start headers
are determined by the cooling strategy, as well as the
spraying pattern π. The cooling strategy provides a
precalculation through consideration of some
boundary conditions for process model (2), after
which the nominal number of headers Nop can be
found through recursive calculation of the process
model (2).

Tcc gives the cooling curve from which the critical
temperature can be obtained. Once the temperature
of the slab is reduced to the critical temperature, the
cooling rate can not exceed certain limits, otherwise
the slab risk quality deformation due to the physical
transitions in the steel. For this reason, the staggered
spraying pattern is used after the critical temperature
is reached.

Setup model. The setup model is classified into
different parts for different control variables.
Boundary variations of slabs on entering the cooling
section, which is mathematically unmodelled, will
upset the cooling performance. In reality the
operating points are determined through slab
classifications according to grade, thickness and
required target temperature.

Feedforward control (Guo, 1997). The required
header number correction for the slab segment
currently under the entry pyrometer is calculated by
feedforward control. Any change in the number of
sprays is scheduled to occur when the affected slab
segment reaches the appropriate spray unit along the
runout table. A heuristic model below is used to
calculates the dynamic correction for the number of
water sprays.
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where Nop is the nominal number of headers; the
first term in the bracket allows for the compensation
of entry temperature variation; the second term for
the compensation of speed variation; the third for
slab thickness variation and the fourth for water
temperature variation. η1, η2, η3, η4 are adaptation
coefficients for compensation of the deviations of
entry conditions from workpoint conditions.

In case of changing process dynamics due to process
noise or modelling error, the heuristic model (5) on
which the feedforward control is based should be
updated. In light of this the four parameters (η1, …,
η4) in (5) are adapted online. This requires other
modeling and control techniques as described below.

Adaptive algorithm for feedforward control. The
heuristic model (5) is updated using the difference
between the target temperature and the model
prediction. Recursive LS algorithm with forgetting
factors is used as follows in the identification:

y T= ϕ θ                         (6)
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where λf is the forgetting factor, 0≤ λ f ≤ 1.

In order to perform the recursive identification in (6)
∆N must be found. This is done through an expert
system which based on expert experience obtains ∆N
from the difference between the target and the
predicted coiling temperature.

Model learning. Because the heat transfer coefficient
for water cooling has the most influence on the
model accuracy, temperature prediction error of the
process is corrected by means of the online
adaptation of α. The model learning consists of the
expert supervised adaptation of the heat transfer



coefficient α. The coefficients k, γ1, γ2, γ3 in (3) are
recursively identified based on soft measurements
and process experience also using the algorithm in
(7).

Fuzzy reasoning is used to find α since it is needed
for the recursive identification in (7). Due to the lack
of information about the moving slab between the
entry and exit of the cooling zone during cooling, the
difference between the real coiling temperature and
the model prediction by (2) is fed to an expert system
to give the variation of α.

The input variables for the expert reasoning are slab
velocity, slab thickness, slab temperature and the
temperature prediction error, i.e. Tcm-Tt(k). They are
labeled X1, X2, X3 and X4 respectively. The output
variable is the variation of α, which is labelled Y.
The membership functions are shown in Fig. 5 and
Fig. 6.

The fuzzy rules are classified according to steel No.,
thickness and the coiling temperature. The reasoning
process of this system sheds some light on the real
working mechanism of the real time process. For
example, if the actual coiling temperature is higher
than the target coiling temperature it is obvious that
the control system assumed an α greater than the
actual one. So there should be a reduction in α. The
reverse is true if the actual coiling temperature is
lower than the target coiling temperature.
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Fig.5. Input Membership functions
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The expert system finds ∆α (i=1,2,3) based on the
following rules.

if X1 is A11 and X2 is A12 and … and X4 is A14 then Y
is B1 else
if X1 is A21 and X2 is A22 and … and X4 is A24 then Y
is B2 else

… …
if X1 is Am1 and X2 is Am2 and … and X4 is Am4 then
Y is Bm

where m=6. It represents a fuzzy relationship on
YXXX ×××× 4...21 :
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After the expert reasoning, the output Y is
defuzzified to obtain ∆α, which is added to the
workpoint value to result in α. In this way, the heat
transfer coefficient αi is adapted.

4. SIMULATIONS AND INDUSTRIAL
EXPERIMENTS

4.1 Simulations

        Table 2 Experiment conditions

Setpoint Boundary Conditions
Tc v Te d Tw

600 3.14 846 11.14 29

N π TH BH
37 A 17 99

As shown below, the entry temperature has a
fluctuation of around 30 . By using the proposed
control method, the cooling temperature remains
within 5  of the target temperature, which
demonstrates the effectiveness of the method.
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Fig.7a. Entry temperature profile

Fig.7b. Coiling temperature deviation

4.2 Industrial Experiments

Table 3 Experiment conditions

Setpoint Boundary Conditions
Tc V Te d Tw



600 3.04 844 11.14 29

Control Variables
N π TH BH
31 A 17 99

Experiment results. The results for the industrial
experiments are shown in Fig.8.

The entry temperature is shown in Fig.8a which has a
variation of nearly 45 . It can be seen from Fig.8b
that the real coiling temperature has a variation of
nearly 40  without feedforward control and within
10  with the proposed intelligent optimization
control in Fig.8c.

Fig.8a.  Entry Temperature
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Fig.8b. Without feedforward control
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 Fig.8c. With intelligent optimization control

5. CONCLUSIONS

The laminar cooling process of hot slabs has strong
nonlinear and time-varying features, with
uncontrollable and immeasurable dynamics.

In this paper, the intelligent control is applied in the
supervision loop to optimize the cooling performance.
The control provides nominal operating points and
their adaptations for DCS at low-level, with respect
to segments along the length of the slab, steel No.,
thickness and the target temperature of the slab. The
technology of soft sensing is incorporated into the
process model to find the through-thickness
temperature distribution, and makes the through-
thickness temperature control feasible. The system
has models adapted online and is capable of self-
learning.

Industrial experiments at a certain steel plant have
shown that the proposed method can achieve the
desired final cooling temperature with high accuracy,
and could be generalized to deal with slabs at gages
thicker than 20mm.
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