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Abstract: In this paper, we present an asymptotic analysis of a recursive cross-coupled
Kalman filter algorithm for estimating the state of a partially observed bilinear
stochastic system. The cross-coupled Kalman filter algorithm consists of two Kalman
filters — each Kalman filter estimating the state of one of the two state components
of the bilinear system. Our asymptotic analysis provides weak convergence results on
the tracking capabilities of the resulting cross-coupled Kalman filter algorithm.
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1. INTRODUCTION AND MOTIVATION

Bilinear models (Fnaiech and Ljung, 1987),
(Priestley, 1991) are widely used to model non-
linear processes in signal and image processing
and communication systems modeling. In partic-
ular, they arise in areas such as channel equal-
ization (Benedetto and Biglieri, 1983), nonlin-
ear tracking (Halawani et al., 1984) and many
other areas of engineering, socioeconomics and
biology (Bruni et al., 1974).

Let R = (—00,00), Rf = [0,00), Ry = (—00,0],
Rt = (0,00) and R~ = (—00,0). In this paper,
for discrete time n > 0, we consider estimating
the states z,, and s,, of the following partially ob-
served scalar bilinear system given the observation
sequence Y, = (Yo,-- .Y n):

Tnt1 = Spln U +1, (1.1)
Yn =% n U , (12)
Snp1 = (L+9N)sn + 7w 41- (1.3)

v € R' is a small parameter, A € Rj and
¢ € R are constants, {while up}> 0, {Un}> o
and{ wy, }:> o are sequences of i.i.d. R-valued zero-
mean random variables defined on a probability

spac€fP ).

Due to the widespread use of the above bilinear
model, there is strong motivation to develop es-
timation algorithms fof the states ,},>0 and
{$n}n>0 of such systems given noisy observations
{¥n}n>0- Unfortunately, the optimal filter for re-
constructing conditional melrestimates  ,|Y),)
and® ,|Y,) of the partially observed bilinear
system cannot be characterized by a finite dimen-
sional statistic. Thus, practical state estimation
algorithms for bilinear systems are necessarily
suboptimal. For example, the extended Kalman
filter (EKF) is an approximate filter that lin-
earizes around conditional mean state estimates
at each time instant.



In recent work (Johnston and Krishnamurthy,
1999), rather than computing approximations of
the conditional mean estimates, iterative finite
dimensional algorithms were presented for com-
puting the optimal MAP state sequence estimate
for a bilinear system. In particular, the Expec-
tation Maximization (EM) algorithm (Dempster
et al., 1977), (Wu, 1983) was used to numeri-
cally compute these MAP state sequence esti-
mates. Somewhat surprisingly, the EM algorithms
in (Johnston and Krishnamurthy, 1999) for esti-
mating the state of the bilinear system, involved
cross-coupling two Kalman smoothers, each esti-
mating one of the two component signals of the
bilinear system.

The aim of this paper is to present and prove weak
convergence of a recursive (on-line) version of the
EM algorithm for state estimation of bilinear sys-
tems. In analogy to the off-line EM algorithm pre-
sented in (Johnston and Krishnamurthy, 1999),
the recursive (on-line) algorithm we present cross-
couples two Kalman filters, each Kalman filter
estimating one of the two component signals of
the bilinear system. For convenience we call the
algorithm as the cross-coupled Kalman filter al-
gorithm. Empirical studies on the performance
of such cross-coupled filters have shown remark-
able improvements compared to the standard Ex-
tended Kalman filter (EKF), see (Johnston and
Krishnamurthy, 1999) for extensive numerical ex-
amples. Our main results, Theorem 1 and Corol-
lary 1, provide weak convergence limits for the
tracking errors of the estimates of the states
{sn}n>0 as n — oo and v — 0+ of the cross-
coupled Kalman filter algorithm.

Motivation — MAP State Estimation

Let Sy = (s0,---,8n), XN = (x0,--.,2n) and
YN = (yo,--.,yn). Consider now the following
MAP sequence estimation problem for Sy and
Xn: Compute the MAP sequence estimates

(SN;XN)MAP = argrglaj(foN,XN\YN (SJleN)

(1.4)
where fs. xy vy(-|-) denotes the joint condi-
tional probability density function of Sy and
Xn, conditioned on the measurements Yy. In
(Johnston and Krishnamurthy, 1999), the above
optimization was carried out iteratively by us-
ing the following coordinate descent algorithm
(Luenberger, 1984): Staring with (arbitrary) ini-
tial estimates SJOV, X9 A7, compute recursively SN
and X, for iterations i > 1, as

X]i\}i—l = arg m}?‘X IOg fSN,XN,YN (glz\la Xa YN);
(1.5)

Sirt = argmsaxlog Fonxn.¥a (S, X1 Vi),

(1.6)
where fsy,xn,va () is the joint probability
density function of Sy, Xy, Yn.

It is proved in (Johnston and Krishnamurthy,
1999) that subject to some mild regularity con-
ditions, the MAP estimates of Sy, Xy generated
by the above algorithm converges to a stationary
point in the likelihood surface
Jsn,xn|vy (5 -|Yn). Indeed, the above algorithm
is shown in (Johnston and Krishnamurthy, 1999)
to be a special instance of the Expectation Max-
imization (EM) algorithm which is used widely
for MAP and maximum likelihood estimation
(Dempster et al., 1977).

To motivate our recursive (on-line) algorithm first
consider the implementation of (1.5) and (1.6). It
is straightforward to show that (1.5) is equivalent
to

Citl _ —1_—2(a _ = \2
XN =arg  max —27 0, (20 — o)
X=(wo,---,wzv)

+27102 Z n — Cipn)?
“15=2 Z —§ En)?
+ terms independent of X ), (1.7)

where 84 = (5i,...,54), 04y, 0y and o, are
covariances of xg, up and vg (respectively), while
Zg is the mean of zg. On the other hand, (1.7) is
identically the maximum of the log likelihood of
the linear Gaussian signal model:

0<n<N, (L8

Jn = CEp +v,, 0<n <N (1.9)
Hence, the maximization (1.7) is carried out via a
Kalman smoother on the linear signal model (1.8),

(1.9). Similarly, it is straightforward to show that
(1.6) is equivalent to

-ﬁn+l = §:Li'n + Un+1,

XJ’\}H =arg max
S=(§o,~~~y§N)

1 72 Az+1 Az+1A )2
n+1 n Sn

( - 2_10'5_02(30 — 50)2

12 722 (14 N)dn)?
+ terms independent of S') , (1.10)
where Xitt = (35, ... #i4Y) o, and o, are

covariances of sg, and wy (respectively), while 5¢



is the mean of sg. On the other hand, (1.10) is
identically the maximum of the log likelihood of
the linear Gaussian signal model:

Spt1 = A +9N)8n +ywnt1, 0<n <N, (1.11)

Jn = Cn8p +Un, 0<n <N, (1.12)
where §, = 25} and &, = 2, 0 < n < N.
Hence, the maximization (1.10) is achieved by
a Kalman smoother applied to the linear signal

model (1.11), (1.12). Thus, the algorithm involves
cross-coupling two Kalman smoothers.

The Cross-Coupled Kalman Filter Algorithm for
Recursive State Estimation

The above iterative coordinate descent algorithm
for computing the MAP state estimates is off-line.
Its structure based on the cross—coupling of two
Kalman smoothers point towards the following
recursive (on-line) algorithm for state estimation:
Replace the Kalman smoothers by Kalman filters.
The resulting recursive algorithm has a clear in-
tuitive interpretation — knowledge of the signal
states {sy }n>o results in a Kalman filter achieving
optimal estimates of {2, },>0. Conversely, knowl-
edge of the states {z,}n>0 means a Kalman fil-
ter achieves optimal estimates of {sp}n>0. Hence,
from a heuristic point of view it makes sense
to cross—couple two Kalman filters. In extensive
numerical studies presented in (Johnston and Kr-
ishnamurthy, 1999), it has been shown that the
cross-coupled Kalman filter algorithm performs
significantly better than the Extended Kalman
filter. The aim of this paper is to study the conver-
gence and tracking properties of the cross-coupled
Kalman filter algorithm.

Analysis Limitations

In this paper, the cross-coupled Kalman filter al-
gorithm for state estimation in scalar bilinear sys-
tems is considered only. The main reason for not
analyzing the multidimensional case comes out
from the fact that the ‘averaged’ ordinary differen-
tial equation (ODE) associated with the algorithm
and the system (which is defined in (4.2), Section
4) is so complex in the multidimensional case
that it is extremely hard to analyze its stability
properties. However, without demonstrating that
the ‘averaged’ ODE is globally Lagrange stable,
it is practically impossible to provide any result
on the asymptotic behavior of the cross-coupled
Kalman filter algorithm. Moreover, the proper-
ties of the parameterized Markov chain associated
with the algorithm and the system (which is de-
fined in (4.1), Section 4) are also very complex
and it is extremely difficult to analyze its stability
(i.e., ergodicity). However, the properties of the

‘averaged’ ODE are tightly connected with this
Markov chain and without showing its geometric
ergodicity, it is not even possible to verify if the
right-hand side of the ‘averaged’ ODE is well-
defined.

2. BILINEAR SYSTEM AND
CROSS-COUPLED KALMAN FILTERING
ALGORITHM

The on-line estimation of s, given the observa-
tions yo, ..., Yn is the problem considered in this
paper. As (1.3) is a system with slow dynamics for
the case of v — 0+, estimating s,, reduces to the
problem of tracking a slowly varying parameter
(for details see (Benveniste et al., 1990, Section
4, Part I)). The problem of the estimation of
{$n}n>0 is analyzed under the following assump-
tions:

Al {un}tn>0, {Vn}tn>0, {Wn}n>o are mutually
independent. 8 = E|ug|® < oo, u® = E|vg|® < oo,
1, = Bl * < 0o, E(uo) = E(uo) = E(w) = 0,
02 = E|UO|2 >0, 0'12) = I[‘:|’U0|2 > 0, 0120 = ]E|UJ0|2 >
0 and ¢ #0.

Assumption Al corresponds with the noise
{UH}TLZOJ {UH}TLZOJ {wn}HZO: and is typical for
the problems of state-estimation in stochastic sys-
tems (for details see (Anderson and Moore, 1979),
(Caines, 1988)). It is satisfied if {un }n>0, {Un }n>0,
{wn}n>o are jointly independent Gaussian white
noise.

Remark. In (Tadi¢ and Krishnamurthy, 2001), a
mean-square trarking error of the cross-coupled
Kalman filter has been analyzed. The analysis has
been carried out for a bilinear system which is
slightly more general than (1.1) — (1.3).

Cross Coupled Kalman Filter algorithm: The fol-
lowing algorithm is used for the state estimation
of the system (1.1) — (1.3):

Sn+1 = Po((L+9N)é,
+(1 + ’7)‘)7‘2n§7n(7@n£’i + 02)71 (i'n—i—l - §n'i'n))7
(2.13)

Gny1 = P((1 + 7)\)2(jn
—(L+ NG 85 (Yands, + 07) H + 703,
(2.14)

mA‘n—i—l = §n'i'n
+Pnt1 (czﬁn—i-l + ‘712;)_1(yn+1 — C8pdn),
(2.15)



A~ a2 A 2 A2 A2 2 A 2\—1 2
D1 = 8,00 — 5,00 (C P +0,) "1 + 0.

(2.16)

80, o are R-valued deterministic variables, while
Po, do are R} -valued deterministic variables. @ =
[0, 0], where § € (0,1) is a constant, while the
projections are defined as

Py(3) = arg min |5 — §'|,
0(6) = arg min |5 - ¥

P(¢) =arg min |§—¢'|, 3,4€R (2.17)

i’ €[0,k]
where k = 2(1 + ¢ %0,%02)*(1 + o).

Notice that (2.13) — (2.16) are the equations of
two Kalman filters. The (truncated) Kalman filter
(2.13), (2.14) operates on the linear model with
state dynamics (1.3) and observation equation
(1.1) modified by replacing z,, with its estimate
Zn- The filter (2.13), (2.14) yields a state estimate
Sn+1 together with a covariance estimate y@n41,
while the estimate #,, (used by this filter) is com-
puted by the Kalman filter (2.15), (2.16) (notice
that this Kalman filter updates the estimates in
the predictor form usually denoted as 8,4, and
Gn+1/n> 1-€., 8p41 is computed after receiving the
observation #,41 of s,). On the other hand, the
Kalman filter (2.15), (2.16) operates on the linear
model with state dynamics (1.1) and observation
equation (1.2) modified by replacing s, with its
estimate §,. The filter (2.15), (2.16) yields a state
estimate &, together with a covariance estimate
Pn, while the estimate §,, (required by this filter)
is computed by the Kalman filter (2.13), (2.14)
(this Kalman filter operates in the filtered form
with estimates usually denoted as Z,,y1jn+1 and
Prt1|n+1> 1-€., Tny1 is updated based on the obser-
vation ypn41 of Zn41). Thus, the two Kalman filters
are cross-coupled, each feeding its estimate to the
other which in turn computes a new estimate.
From a heuristic point of view, if %, is close to
Zn, then the Kalman filter (2.13), (2.14) generates
near optimal estimates §,41. If this estimate is
close to the true state s,,41, then the Kalman filter
(2.15), (2.16) generates near optimal estimates of
Zp+1 and so on.

A natural performance measure for quantify-
ing the performance of the above cross-coupled
Kalman filter algorithm is to compare its esti-
mates 5, with s,. Hence, the aim of the analysis
carried out in this paper is to provide asymptotic
results on the tracking errors §, — s, and as
n — oo and v — 0+ of the cross-coupled Kalman
filter algorithm.

Remark. In (Ljung, 1979), local stability analysis
of the Extended Kalman filter (in the prediction
form) is carried out for estimating s, assuming
sp = s is a constant parameter. It is shown therein
that zero is the stationary point of the ‘averaged’

ODE and that the ‘averaged’” ODE has three
stationary points if s < 0. Basically, this means
that the identifiability conditions are violated (see
(Benveniste et al., 1990, Assumption NS3, Page
124)). Using the filtering form of the Kalman filter
(2.15), (2.16) in the cross-coupled Kalman filter
algorithm circumvents this problem — for details
see (Tadi¢ and Krishnamurthy, 2001).

3. ALGORITHM REPRESENTATION AND
NOTATION

In this section, it is shown that the difference
equations (1.1) — (1.3) and (2.13) — (2.16) of
the partially observed bilinear model together
with the cross coupled Kalman filter algorithm
falls into the category of stochastic approximation
algorithms studied in (Benveniste et al., 1990).
For S,§,(j,$,.’i’,fi’l € R; 0 = (§,q), 6 = (.’L',Ii',i"),
let

F(6,8) = X8 + 0,248 (2' — 54),
G(6,8) = 05, + 20§ — 0,2 ¢°3?,
s 0 O
A(l,s) = 0 0 1],
s3(8) 0 (3)
0

and H(6,¢&) = (F(6,£),G(6,€)) (notice that p(3)
is the asymptotic solution of the Riccati equation
(2.16) parameterized by §). Moreover, let Zj = &g
and

57,n+1 = a(5p)2), + B(3n) (@ny1 + C_IUn-H),

Hn+1 = UJQQn(ﬁnﬁn—H - 'i',nﬁln-i-l)
—03%8ndn (85, — |20,]%)
+YA0y 24nn (Bt — 8ndin)
—y(1+ A0y, @5 (Eny1 — 8ndn)
(’YqAnaAji + UZ)_la

Ung1 = YA 240 — VA2 + YN0, 2682
+Y(1+ N0y Gn&n (vandy +03) ™!
(notice that £, is obtained by the Kalman filter
(2.15) with the covariance p, replaced by p(3,)
of (3.1)). Furthermore, let & = (2,0, %)7 and



0, = (§n7 (jn)a §n+1 = (xn+1:i‘ln,7 jjln+1)T7 Pn+1 =
(Bnt1,Vnt1)s M = (un,v,)T. Then, the difference
equations (1.3) and (2.13) — (2.16) can be repre-
sented in the following form:

Sn41l = Sn + ’7/\5n + YWn+1, (3 2)
Ont1 = HQ (en + A/H(ena §n+1) + 7pn+1)a (3 3)
£n+1 = A(ana Sn)é-n + B(an)nn+l7 (3 4)

where Ilg(t) = argming cgxo,x |6 — 6'l], 6 € R?.
On the other hand, A1 and (3.4) imply that

P(&ny1 € B|Fn) = P(B|0n, 5n,&n) w.p.1,

for all B € B?, where Fy = {0,Q}, F, =
of{ug,vi,w; : 1 <i<n},n>1, and

P(B|0,s,&) =E(Ip (A(8,5)§ + B(0)no)),
BeBOcR secR  (3.5)

Hence, the difference equations (1.1) — (1.3) and
(2.13) — (2.16) are really of the same form
as stochastic approximation algorithms studied
n (Benveniste et al., 1990), and therefore, the
asymptotic analysis of (1.1) — (1.3) and (2.13)
— (2.16) is based on the methods developed in
(Benveniste et al., 1990). Notice that the above
formulation decomposes naturally into two time
scales: The ‘hypermodel’ {s,},>0 in (3.2) is a
slowly time varying process with small param-
eter v > 0, while the regression vector &, of
(3.4) is rapidly time varying in comparison with
sn- The state estimation tracking algorithm (3.3)
comprises of the Kalman filter state estimate 5,
and covariance estimate ¢, of the hypermodel
{sn}n>0.

Throughout the paper, the following notation is
used. For s € R, s € @, let

r=o(cos+07) ", pg =supmax{r'/*,|¢'/*},
teQ

i(3,5) = 02,87 (3) (1 + sa(3))
+c oy 8a(8)A%(8)(1 — 87,

0(3,8) = UQﬂQ(A)(l + sa(3))

2oy 82(3)(1 — s)(1 - sa(3)),
w(3,5) = (1 =53 (1 = sa(3))(1 — 5?),
a(3,s) = u(5,s)w " (5,s),
b(3,5) = 0(8,s)w™" (5, 5),
1(3) = a3 (*p(8) + )7
(obviously, r,pg < 1). Moreover, for § €

[-1,1],§ € [0,k],s € Q,8 = (5,§), let
u(3,s) = b71(3,8) (Ao + (N0t + 0202 b(3,5))1/?),
v(3,4,8) = 0, 2(—=2Xa2 + b(3,5)(§ + u(3,9))),
f(8,8) = A5 — (5 —s)a(, s),
9(0,5) = —(4 —u(3,5))al(3,s)
=u(s, s).

and w(s)

4. MAIN RESULTS

In order to present the main results of this pa-
per, the following notation is needed. Let ©,, =

(6, 8n). Moreover, for § € [—1,1] x [0,k],s €
Q,0=(0,s), let
£.(0,5) =D A"™6,5)B(O)m;, (4.1)

E COV

H(6,%(0,s)),

(6,806, 5)), H(0,8n(6,5)))

+ZCOV (eafn(eas)))a
while h(8,s) = IE( (@,
R(©) = (h(f,5),Xs), R(©) = OR(© )
diag{S(0, s), 02 }. Moreover, let O(-) an
the solutions of the equations

000+ [ RE0
:/OtR(

O

Vdr, teRE, (4.2)

dT+/§ NW (dr),

te RS, (4.3)
where W (-) is standard Brownian motion, while
o) = (5(t),4(t),s(t)), O) = (5(t),d(t),5'())
and é(t) = §(t)—&'(t) for all t € R{ . Furthermore,
fort € Rf,v eR+ let
0,(1) =Y (On+7 (t = 17)(Ont1 — O4))
n=0
'I[n'y,(n+1)'y) (t)
and ©,(t) = 77'/2(0,() — O(1), ©,() =
(8, (), 4¢(2), 5, (1), O4() = (35(t), (1), &, (t))
and &,(0) = 5,(1) 3.
Remark. h(-,-) and S(-,-) can be considered as

the ‘averaged function’ and ‘limiting covariance’
associated with the difference equations (3.3),
(3.4). Similarly, R(-) and S(-) are the ‘averaged
function’ and ‘limiting covariance’ associated with
the difference equations (3.2) — (3.4). On the
other hand, (4.2) and (4.3) can be considered
as the ‘averaged’ ordinary differential equation
(ODE) and ‘limiting’ stochastic differential equa-
tion (SDE) associated with (3.2) — (3.4). The
asymptotic behavior of {©,},>0 as n — oo and
v — 0+ is tightly connected to (4.2) and (4.3).
Namely, the piecewise linear interpolation ©.,(-) of
{O1}n>0 converges to a solution of (4.2), while the
piecewise linear interpolation 0, () of {y/%(0,, —
O(n7)) }n>0 converges weakly (in distribution) to
a solution of of the SDE (4.3) (this can be viewed



as a functional central limit theorem; for more
details on the relevance of the associated ODE
and SDE for the asymptotic analysis of stochas-
tic approximation algorithms see (Benveniste et
al., 1990)).

The main results of the paper are contained in the
following theorem:

Theorem 1. Let Al hold. Then, {(:),,(-)},YGRJr con-
verges weakly in Skorohod topology to O(-) as
v — 0+.

For the proof see (Tadi¢ and Krishnamurthy,
2001).

As immediate consequences of Theorem 1, the
following corollary is obtained:

Corollary 1. Let Al hold. Then,

5, (t) = 5,(1) = 3(t) — s(t) +7'%e, (1) (4.4)
for all t € RY,y € R*. Moreover, {&,(")},cr+
converges weakly in Skorohod topology to &(-) as
v — 0+.

Remark. The results of Theorem 1 are related
to the weak convergence of {O,}n,>0 as v —
0+, while Corollary 1 corresponds with the weak
convergence of the error of the estimates §,, asy —
0+. Moreover, Corollary 1 provides an insight into
the structure of this error — (4.4) represents the
decomposition of the error into the sum of a bias
and variance, where §(-) — s(-) is the bias and
y/2¢,(-) is the variance.

5. CONCLUSIONS

We have presented an asymptotic analysis of the
cross-coupled Kalman filter algorithm for esti-
mating the state of a scalar valued partially ob-
served bilinear system. Numerical studies given
in (Johnston and Krishnamurthy, 1999) shown
that the cross-coupled Kalman filter algorithm
performs significantly better than the Extended
Kalman filter in several situations. In future work
we will extend the analysis to jump Markov linear
systems — where the estimation algorithm consists
of cross-coupling a Kalman filter with a Hidden
Markov Model filter.
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