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Abstract: In this paper, the almost sure rate of convergence of temporal-difference
learning algorithms is analyzed. The analysis is carried out for the case of discounted
cost function associated with a Markov chain with a finite dimensional state-space.
Under mild conditions, it is shown that these algorithms converge at the rate
O(n='/?(loglogn)'/?) almost surely. Since O(n~'/2(loglogn)'/?) characterizes the
rate of convergence in the law of iterated logarithm, the obtained results could be
considered as the same law for temporal-difference learning algorithms. For the same
reason, the obtained convergence rate is probably the least conservative result of
this kind. The results are illustrated with examples related to random coefficient

autoregression models and M/G/1 queues.
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1. INTRODUCTION

Temporal-difference learning with function ap-
proximation is a recursive parametric method for
approximating a cost function associated with a
Markov chain. Algorithms of this type aim at de-
termining the optimal value of the approximator
parameter by using only the available observations
of the underlying chain. Basically, they update the
approximator parameter whenever a new observa-
tion of the underlying chain is available trying to
minimize the approximation error.

The problems of the prediction and approxima-
tion of a cost-to-go function associated with a
stochastic system modeled as a Markov chain
appear in the areas such as automatic control
and time-series analysis. Among several meth-
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ods proposed for solving these problems (e.g.,
Monte Carlo methods in statistics and maxi-
mum likelihood methods in automatic control),
temporal-difference learning is probably the most
general. Moreover, it is efficient and simple to
be implemented. Due to their excellent perfor-
mances, temporal-difference learning algorithms
have found a wide range of application (for details
see e.g., (Bertsekas and Tsif8iElis, 1 ), (Sutton
and Ba®®8 1 ) and references cited therein),
while their asymptotic properties (almost sure
convergence, convergence in mean and probabil-
ity, convergence of mean) have been analyzed in
a great number of papers (see see also (Bertsekas
and Tsitsild§ 1 ), (Sutton and Ba®@§ 1 )
and references cited therein). Although the exist-
ing results provide a good insight into the asymp-
totic behavior of temporal-difference learning, not
much is known about their convergence rate.



In this paper, the almost sure convergence rate
of temporal-difference learning algorithms is ana-
lyzed. The analysis is carried out for the case of
discounted cost function associated with a Markov
chain with a finite dimensional state-space. Under
mild conditions, it is shown that these algorithms
converge at the rate O(n~/?(loglogn)'/?) almost
surely. Since O(n~'/?(loglogn)'/?) characterizes
the rate of convergence in the law of iterated log-
arithm, the obtained results could be considered
as the same law for temporal-difference learning
algorithms. For the same reason, the obtained
convergence rate is probably the least conservative
result of this kind. Furthermore, to the best of the
author’s knowledge, there does not exist a similar
result in the available literature on reinforcement
learning. The main results of the paper are illus-
trated with examples related to random coefficient
autoregression models and M/G/1 queues. This
paper is a continuation of the author’s work pre-
sented in (Tadi¢, 2001b).

2. MAIN RESULTS

Temporal-difference learning algorithms with lin-
ear function approximation are defined by the
following equations:

Ont1 = On + Yny1dnyienyr, n>0, (1)

dn+1 = C(Xn7 Xn+1) + O‘GTTL’¢(XTI+1)
_0£¢(X")a n >0, (2)

n

ent1 =) (aN)"'¢(X;), n>0. (3)

=0

{Vn}n>1 is a sequence of positive reals, while a €
(0,1) and X € (0,1] are are constants. ¢ : R? x
R? - R and ¢ : RY — R? are Borel-measurable
functions. 6y is an R%valued random variable
defined on a probability space (Q,F,P), while
{Xn}n>0 is an R? valued homogeneous Markov
chain defined on the same probability space.

For z € RY, let
X() = iE)

(provided that J,.(-) is well-defined). In the con-
text of dynamic programming, J, () is interpreted
as a discounted cost function associated with the
chain {X, }n>0 (for details see e.g., (Bertsekas and
Tsitsiklis, 1996)). The task of the algorithm (1) —
(3) is to approximate the function Ji(-). It deter-
mines the optimal value 6, of the parameter § €
R? such that the 87 ¢(-) is the best approximator
of J.(-) among the family {87 ¢(-)}gcpa- If A =1

Ji(z) = FE (Z a"ce(Xp, Xny1)

n=0

and {X,},>0 has a unique invariant probability
measure 7 (), the algorithm (1) — (3) determines
0. € R? such that 87 ¢(-) approximates .J,(-)
optimally in the L?(7)-sense, i.e., it searches for
the minimum of the function J(8) = [(67 ¢(z) —
Ji(z))?7(dz), 6 € R%.

Let Rt = (0,00), R =[0,00) and R = [0, ],
while || - || denotes the Euclidean vector norm and
the matrix norm induced by the Euclidean vector
norm (i.e., ||Al| = supjgy=; [|46]], A € R¥*?). Let
P(z,-), z € RY, and P,(z,-), ¢ € R, be the
single and n-th step transition probability kernel
of {X,}n>0 (respectively), i.e., P(z,-) = Pi(z,-),
Vz € R?, and

P(X, € B|Xo =z) = P,(z,B) w.p.l,
VB e BY, Vz € R n > 0.
In this paper, the almost sure convergence of the
algorithm (1) — (3) is analyzed under the following

conditions.

A1, 0 < v = limp oy, < o0 and ¥ =
lim,, o n|’yn'y;i1 —1] < 0.

A2. {Xp}n>o is positive Harris with «(-) as a
(unique) invariant probability measure.

A3. There exist a constant p € (2,00) and a

Borel-measurable function f : RY — RF such
that ||¢(z)|| < f(x), V& € R?, and

/ 22 () (dz) < oo, (4)

/ le(z,2') P P(w,dz') < f*(z), V€ RY,
i a™(P,fP)(z) < 00, VzeRY. (5)
n=0

AJ. There exist a constant ¢ € (2,00) and a
Borel-measurable function g : RY — R{ such
that

[ o @m(as) < o0,

oo
n=0

< g(z), VzeRY, m>0, (6)

/ 6(2") (P (@) (Pa — 7)(z, da’)

/ (") (Pon) (') (Po — ) (2, ")

n=0
<g(#), YreR", m>Q, (7
where &(z) = [ ¢(z,2")P(z,dz").



A5

/ $(2)¢7 (2 (dz)

_271771(1 _ a)fl

is positive definite.

(1—aXI

Assumption Al corresponds with the algorithm
step size. It is satisfied if v, = yn~!, n > 1, which
is a typical choice for the step step of reinforce-
ment learning algorithms (see e.g., (Bertsekas and
Tsitsiklis, 1996), (Sutton and Barto, 1998) and
references cited therein).

Assumption A2 is related to the recurrence and
stationarity properties of {Xp}n>0. Assumptions
of this type are standard for the asymptotic anal-
ysis of temporal-difference learning algorithms
(see (Bertsekas and Tsitsiklis, 1996), (Sutton and
Barto, 1998) and references cited therein; see also
(Tadié¢, 2001b) and (Tsitsiklis and Roy, 1997)).

Assumption A3 corresponds with the growth rate
of ¢(-,-) and ¢(-). It requires these functions not
to grow too fast so that their upper bound f(-)
satisfies (4) and (5). The role of A3 is to en-
sure (together with A2) that certain functions
of {Xn}n>0 admit the law of large numbers (see
(Tadi¢, 2001a)), as well as to provide that Ji(-)
and A, b, (defined in (9) and (10)) are well-
defined and finite. A3 is satisfied if ¢(-,-) and
¢(-) are globally bounded or if ¢(-,-) and ¢(:)
are locally bounded and there exists a constant
K € R* such that || X,|| < K wp.l,n>0. It is
also satisfied if { X}, },>0 is uniformly ergodic (see
Section 3).

Assumption A4 is related to the stability of
{Xn}n>o0. Basically, A4 requires {X,}n>0 to ex-
hibit sufficient sufficient “degree of stability” (i.e.,
P.(z,-), = € RY, to converge to n(-) sufficiently
fast) so that (6) and (7) hold. Its role is to ensure
that certain Poisson equations have unique solu-
tions (see (Tadi¢, 2001a)). A4 is satisfied under
uniform ergodicity conditions (see Section 3) and
is typical for the asymptotic analysis of temporal-
difference learning algorithms (see (Bertsekas and
Tsitsiklis, 1996), (Sutton and Barto, 1998) and
references cited therein; see also (Tadi¢, 2001b)
and (Tsitsiklis and Roy, 1997)).

Assumption A5 is a “persistancy of excitation”
condition. These conditions are typical for the
areas of system identification, adaptive control
and adaptive signal processing (see e.g., (Goodwin
and Sin, 1984), (Solo and Kong, 1995) and refer-
ences cited therein). A5 requires {¢(X,)}n>0 to
sufficiently “rich” with respect to all directions
in R? at the asymptotic steady-state character-
ized by m(-). It is satisfied if [ @(2)¢” (z)m(dz)
is positive definite (i.e., w(z : 8T ¢(z) # 0) > 0,

Vz € R?) and 7 is sufficiently small. The require-
ment that [ ¢(z)¢” (z)7(dz) is positive definite is
standard for the asymptotic analysis of temporal-
difference learning algorithms (see (Bertsekas and
Tsitsiklis, 1996), (Sutton and Barto, 1998) and
references cited therein; see also (Tadié, 2001b)
and (Tsitsiklis and Roy, 1997)).

The main results of the paper are contained in the
next theorem.

Theorem 1. Let A1 — A5 hold. Then, there exists
a constant C € R* such that

lim n'/?(loglogn) /2|10, — 6.]|

n—oo

<C wpl, (8)
where 0, = —A, b, and

- / b(@)9 )
N> (@) [ 6(@) (Pra ") @)mda),
n=0
©)
(@)™ | ¢(z)(Pne)( dz 10
b= 3o (@" [ 6P @ntan). (1)

Moreover, (8) holds with

C=CA+EK)(1+A,}),

WhereC—c(1+K)\T_nm)(K+L) K=K+21 vt
and Amin = Amin — 21y L, while Apin is the
minimal eigenvalue of —A,, ¢ = 36(1 +v ++')

and
K=3(1-a\" (/f2p )/,,’
L=2(1—a))" (/ gq(z')w(da:)> "

The proof is given in (Tadié¢, 2001a).

Remark. It is important to notice that C does
not depend on d and d'. This means that the con-
vergence rate (or learning rate) of the algorithm
(1) — (3) is asymptotically independent of the
dimension d of the parameter € and the dimension
d' of the state-space of {X;,}n>0.

Asymptotic behavior of temporal-difference learn-
ing algorithms has been considered in a large num-
ber of papers (see e.g., (Dayan, 1992), (Dayan and
Sejnowski, 1994), (Jaakola et al., 1994), (Sutton,
1988), (Tadié, 2001b), (Tsitsiklis and Roy, 1997);
see also (Bertsekas and Tsitsiklis, 1996), (Sutton



and Barto, 1998) and references cited therein).
Although the existing results provide a good in-
sight into the asymptotic behavior of temporal-
difference learning algorithms, not much is known
about their rate of convergence. The strongest
existing results on their asymptotic behavior are
probably contained in (Tsitsiklis and Roy, 1997)
(recently, the results of (Tsitsiklis and Roy, 1997)
have been extended in (Tadié¢, 20015)). In compar-
ison with the assumptions adopted in (Tsitsiklis
and Roy, 1997), A1 — A5 are just slightly more
restrictive: for sufficiently large v, the assumptions
of (Tsitsiklis and Roy, 1997) would be a special
case of Al - A5 if A3 were replaced with the
requirement that there exists a Borel-measurable
function f : R¥ — R{ such that [ f2(z)n(dz) <
o0, [[¢(2)]| < f(z), Yz € R, and

/ le(z, 2')|*P(z,dz') < f*(z), Vz e R?,

Za (P f)(z

) < oo, Vz € RY.

However, only the almost sure convergence of
temporal-difference learning algorithms has been
analyzed in (Tsitsiklis and Roy, 1997). On the
other hand, the results presented in this paper
could be thought of as the law of large num-
bers for these algorithms. Therefore, the results
of this paper could be considered as probably the
least conservative result on the almost sure rate
of convergence of temporal-difference learning al-
gorithms. To the best knowledge of the present
author, there does not exist a similar result in the
literature on reinforcement learning.

3. SPECIAL CASES

The results of this section correspond with the
special cases of A1 — A5 where {X,},>0 is uni-
formly ergodic and continuously valued (Theorem
2) and where the state-space of { X}, }n>0 is count-
able (Theorem 3).

The algorithm (1) — (3) is analyzed now for the
case where {X,},>0 is uniformly ergodic. The
assumptions under which the analysis is carried
out are as follows:

B1. {X,}n>0 has a unique invariant probability
measure 7(+).

B2. There exist constants p,q € (2,00) and a
Borel-measurable function f : RY — [1,00) such
that [ fP1(z)m(dz) < oo, [|¢(z)]| < f(x), Va €
R and

/ le(z, 2')|PP(x,da') < fP(z), Vz € RY.

B3. There exist constants M € [1,00) and p €
(0,1) such that

‘/ (o, dz')

< Mp"fP(z), YzeRY, n>0, (11)

for any Borel-measurable function ¢ : RY — R
satisfying 0 < o(z) < fP(x), Vz € R .

Remark. Due to the Jensen inequality,

[ @)
<(/ fZP(w)W(dw)>l/2
< (/ qu(w)w(dx)) v < 0. (12)

Then, it is clear that the left-hand side of (11) is
well-defined.

Theorem 2. Let A1, A5 and B1 — B3 hold. Then,
the conclusions of Theorem 1 hold with

g(@) = L(1+ f*(z)), = € RY,

where L = 4M?(1 — p'/7)~1
and

, while r = p/(p — 2)

NM=M+ /fp(m)w(da:).

The proof is given in (Tadi¢, 2001a).

The algorithm (1) — (3) is now analyzed for the
case where the state-space of {X,},>0 is count-
able. Let Zg (the set of non-negative integers)
be the state-space of {X,}n>0. In that case, the
functions ¢(-,-) and ¢(-) (appearing in the algo-
rithm (1) — (3)) map Zg x ZF into R and Z;
into R?, respectively. Let pf; = P(X,, = j|Xo = i)
and p;; = pzlj, n,%,j > 0. The assumptions under
which the analysis is carried out are as follows:

C1. {X,}n>0 has a unique invariant distribution
™= {ﬂ—n}nZO (i'e'7 Ty = hmn—>oo p:;; i, > 0)

C2. There exist constants p,q € (2,00) and a
sequence { f, }n>0 from [1, c0) such that ||¢(n)|| <
fna n 2 07 and

oo

Z fﬁqﬂ'n < o0,

n=0

oo
Z|0n1|pm<fna

=0

n > 0.



C3. There exist constants M € [1,00) and p €
(0,1) such that

oo
Z@y(pz—ﬂ'] <Mp 7 n7i207

for any sequence {¢y, },>o satisfying 0 < ¢, < f?,
n > 0.

Cy.

Z $(n)¢" (n)mn
2 1 - )71 = aN)T
is positive definite.

As an immediate d consequence of Theorem 2, the
following result is obtained.

Theorem 8. Let Al and C1 — C4 hold. Then, the
conclusions of Theorem 1 hold with

8
8

2D _(eN"g(@e" ()i i,

oo 1/q
L=2(1-a\N"'L <1 +) fﬁ"m) ;

n=0

WhereNfL = 4M2(1 — pl/r)_1
and M =M+ > fim,.

, while r = p/(p — 2)

The proof is given in (Tadié, 2001a).

4. EXAMPLES

In this section, the main results of the paper are
illustrated with examples related to random coef-
ficient autoregression models and M/G/1 queues.

An example where {X,,},>0 is the state of a ran-
dom coefficient autoregression model is considered
now. Let

Xn+1 = (A + An+1)Xn + Un+17 n 2 0:

where A € R¥*? | X, is an R? -valued determin-
istic variable and {A4,},>0, {Un}n>o are jointly

independent sequences of R¥*4'_ and RY -valued
(respectively) i.i.d. random variables.

As an immediate consequence of (Meyn and
Tweedie, 1993, Theorem 16.5.1), the following
lemma is obtained.

Lemma 1. Suppose that E||4¢||? < oo and
E||Us||? < oo. Moreover, suppose that E(A4g) = 0,
E(Up) = 0 and the eigenvalues of A® A+ E(A4q®
Ap) lie in the interior of the unit circle. Further-
more, suppose that the distribution of (Ag,Up)
has an everywhere positive density with respect
to the Lebesgue measure. Then, {X,},>¢ has
a unique invariant measure 7(-) and there exist
constants M € [1,0), p € (0,1) (depending
on the distribution of (Ao,Up) only) such that
J lz||*m(dz) < oo and

[—

< Mp"||z|?>, VzeRY, n>0,

for any Borel-measurable function ¢ : R* — R
satisfying 0 < ¢(z) < ||z]|?, Vz € R?.

Then, as a direct consequence of Theorem 2, the
following result is obtained.

Corollary 1. Let Al and the conditions of Lemma,
1 hold. Suppose that there exists a constant NV €
R* such that |c(z,2')] < N and ||¢(z)]| < N,
Vz,z' € RY. Moreover, suppose that

/ $(2)4” (x)(de)
27y (1~ a)”
is positive definite. Then, there exists a constant
C € R* (depending on 7, N and the distribution
of (Ag,Up) only) such that (8) is satisfied (8, is
defined in the statement of Theorem 1).

1 —aNI

An example related to M/G/1 queues is consid-
ered now (the same example has been used in
(Tsitsiklis and Roy, 1997)). Let X,,4+1 is the num-
ber of customers in a M/G/1 queue immediately
after the completion of the service of the n-th cus-
tomer. Let A be the mean of the interarrival times
of the customers in the queue, while pu(-) is the
distribution of their service times (for details on
M/G/1 queues see e.g., (Asmussen, 1987), (Meyn
and Tweedie, 1993) and references cited therein).

Lemma 2. Suppose that there exists a constant
r € RT such that [exp(rt)u(dt) < co. Moreover,
suppose that [tu(dt) < . Then, {X,},>0 has
a unique invariant distribution 7 = {7, }n>0 and
there exist constants M € [1,00), p € (0,1) and
¢ € Rt such that Y ° | g,m, < 0o and



> il — )| < Mptgi, n,i >0,
Jj=0

for any sequence {¢p }n>0 satisfying 0 < ¢, < g,
n > 0, where g, = exp(cn), n > 0.

Then, as a direct consequence of Theorem 3, the
following result is obtained.

Corollary 2. Let Al and the conditions of Lemma,
2 hold. Suppose that there exist constants N €
[1,00) and s € RT such that ||¢(n)|| < N(1+n®),
n > 0, and

le(m, n)| < N(1+m?® +n%), m,n>0.
Moreover, suppose that
o0
> d(m)e" (n)mn
n=0
27y 1 —a) (1 —aN]

is positive definite. Then, there exists a constant
C € R* (depending on ~, A, N, s and u(-) only)
such that (8) is satisfied (8, = —A; b, while A,
b, are defined in the statement of Theorem 3).

5. CONCLUSION

In this paper, the almost sure convergence rate of
temporal-difference learning algorithms has been
analyzed. The analysis has been carried out for
the case of discounted cost function associated
with a Markov chain with a finite dimensional
state-space. Under mild conditions, it has been
shown that these algorithms converge at the
rate O(n~'/?(loglogn)'/?) almost surely. Since
O(n~'/?(loglogn)'/?) characterizes the rate of
convergence in the law of iterated logarithm, the
obtained results could be considered as the same
law for temporal-difference learning algorithms.
For the same reason, the obtained convergence
rate is probably the least conservative result of
this kind. Furthermore, to the best of the au-
thor’s knowledge, there does not exist a similar
result in the available literature on reinforcement
learning. The main results of the paper have been
illustrated with examples related to random coef-
ficient autoregression models and M /G/1 queues.
This paper is a continuation of the author’s work
presented in (Tadié, 2001b).
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