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Abstract: In this paper, the swing-up control of a 1-link pendulum with the
sinusoidally excited pivot is studied from a viewpoint of energy. The amplitude
of the periodic signal is used as the control input, and is manipulated so that the
energy of the pendulum is equal to the potential energy at the up-right position.
Numerical simulation confirms the validity of the proposed method.
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1. INTRODUCTION

The control of a pendulum has been one of fun-
damental problems in control field. As a control
strategy to stabilize at the up-right position, it is
well known that a linear quadratic technique is
effective. Various nonlinear control methods have
been proposed aiming not only to stabilize but also
to swing up the pendulum. Astrém and Furuta
(2000) realized both swing up and stabilization
from the viewpoint of energy. The pendulum is
controlled so that the total energy is equal to that
of the up-right position (Astrém, 1999).

Contrary to controlling the pendulum for stabi-
lization, it has been studied that the pendulum is
kept up-right position by adding sinusoidal signal
at the pivot in the feedforward way (Phelps and
Hunter, 1964). This has the long history since the
beginning of 20th century. Using such sinusoidal
signal, the swing-up of the pendulum has not been
studied until Michituji et al. (2000), who proposed

the use of chaotic phenomena. In their study, two
kinds of amplitudes are used for the periodic ex-
citation and one of them is chosen depending on
state variables.

This study proposes a method by combining en-
ergy control and periodic excitation. Swing-up
control is hardly possible when the amplitude of
the sinusoidal input is fixed. In this study, the
swing-up is done by controlling the amplitude of
the sinusoidal signal depending on the state. The
proposed method achieves the global stabilization
of a pendulum at the up-right position.

2. MODELING OF A 1-LINK PENDULUM

The paper considers the 1-link pendulum model
illustrated in Fig. 1. In the figure,  and y are
given in the moving frame that the pivot is taken
as the origin.



Fig. 1. The pendulum model. z and y are given
in the moving frame that the pivot is taken
as the origin. z and y denote the positions
of center of gravity in the horizontal and the
vertical axes, respectively. u is the periodic
displacement at the pivot of the pendulum in
the vertical direction.

x=1lcosb, (1)
y=1Isind, (2)

where z and y denote the positions of center of
gravity in the horizontal and the vertical axes,
respectively. u is the periodic displacement at the
pivot of the pendulum in the vertical direction,

u=rsin (27 ft). (3)

The angle 0 is measured along counter-clockwise.
The angle 6 = 7 [rad] is the up-right position (un-
stable equilibrium point), # = 0 is the horizontal
position, and § = —7Z [rad] is the pendant position
(stable equilibrium point). The parameters used in
this paper are shown below.

Table 1. The Parameters

mlkg) mass
[[m] length from pivot to center of gravity
O[rad] angle of pendulum
f[Hz] input frequency
r[m] input amplitude
glm/s?]  acceleration of gravity

C[kgm?/s] viscose friction coefficient
Ilkgm?]  moment of inertia around center of gravity

Associated energies considered in the moving
frame with the pivot as the origin are described
as

1 .
Rotation energy  : Tr = =167,
Translation energy : 77 = §m(j:2 + %), (4)
Potential energy :V = m(g+ &)y,

Dissipation energy : R = 3 o>

Substituting of the energies eq(4) into the La-
grange equation

doL 9L OR
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the equations of the motion are given by

[I+Oml2 ml(iosﬂ] [z] N [g 8] [Z]
[ = [ersrinanm ] ©

where £ denotes the Lagrangian £ = (T + T7) —
V. The parameters m = 0.1, [ = 0.1, g = 9.8,
C =0.36 X 107° and I = ml?/3 are fixed in our
study, and f = fo X 3 = 25.7 is the frequency
of the excitation of the pivot. fo(= 8.57) is the
natural frequency of the pendulum system.

3. STABILIZATION BY PERIODIC INPUT
WITH CONSTANT AMPLITUDE

First, the behavior of the periodically driven pen-
dulum is analyzed for the amplitude of the peri-
odic input, which drives the pivot of the pendulum
in the vertical direction. Simulation results are
shown from Fig.2 with respect to 6§ and 6. In the
figure, the vertical and horizontal axes correspond
to angular velocity 6 and angle 6, respectively.
Both ends of the horizontal axis correspond to
the position § = —3m, 37 [rad], and the center
of the horizontal axis corresponds to the up-right
position ir [rad]. In Fig.2, the simulation are
done for f and r, namely f = 25.7 [Hz] and
r = 0.011 [m]. dt = 1/(10 x 27 f)[sec] is used for

the sampling interval in the simulation.

In Fig.2, the region enclosed by a circle means the
situation where the pendulum is stabilized in the
neighborhood of the up-right position. Fig.2 shows
that there is an attractor where the pendulum
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Fig. 2. The simulation result with » = 0.011[m]
and f = 25.7[Hz]. The vertical and horizontal
axes denote angular velocity 6 and angle 6,
respectively. Both ends of the horizontal axis
correspond to the position § = — %71’, %71’ [rad],
and the center of the horizontal axis corre-

sponds to the up-right position %71’ [rad].



is staying in the neighborhood of the up-right
position. In this simulation, the stabilization is
achieved if the initial state is carefully selected. On
the other hands, outside the circle in Fig.2, there
are cases that some trajectories are going around
the pendant equilibrium position. If the amplitude
r is properly chosen, the pendulum can be stabi-
lized in the situation that its initial position is set
around the up-right position.

3.1 Stability conditions by Mathieu equation

In order to find stabilizing parameters (f,r,0), the
Mathieu equation is known to provide sufficient
conditions for systems to be stabilized at the up-
right position. The equations of the motion for the
1-link pendulum can be written from eq(6);

= ml(g+ i) cosé
o+ I+ mi?

Let C =0and X =6 — 7, eq(7) is written as

+C6 =0. (7)

. ml(g+i)cos (X + F)

X =
+ I+ mi? 0,
o ml(g+i)sin X
X—-— =0
I+mi? 0 ®)

In the neighborhood of the up-right position X =
0, eq(8) is written as

By exciting the sinusoidal input

u=rsin (wt) = —r cos (wt + g) (10)
where
w=27f. (11)
Eq(9) yields

mi(g + rw? cos (wt + %))

I+ mi?
2

¥ _ 2 rw” ™ —
X wn{1+ ; cos(wt+2>}X 0, (12)

X - X =0,

where
9 mgl
w; = .
I+ mi?

(13)

Eq(12) is called the Mathieu equation. The Math-
ieu equation is conventionally written as

d’X/dT? + (a+ BcosT)X =0, (14)

where T denotes the generalized time defined by
T = wt + w/2. Comparing eq(12) and eq(14), one
obtains

a=—-w?/w (15)

and
8= —wlr/g. (16)

So a should be negative. The stability boundary of
the Mathieu equation is given by Acheson (1993),

]‘ 2
ol > |3°)

Moreover when |a| is small, Acheson (1993) and
Blackburn, et al. (1992), give the upper boundary
as || = 0.450 :

(2wi/w2)% < wlr/g < 0.450, (17)
V2gjwnw < r < 0450g/w?.  (18)

f and r should be chosen so that the pendulum
is staying in the neighborhood of the up-right
position, i.e., the above equations are satisfied.
In eq(18), for vibration with f = 25.7[Hz], the
amplitude r should be inside a region as follows,
regardless of the mass,

001 < r < 0.06. (19)

Since the amplitudes are chosen as r = 0.011 [m]
(Fig.2), the figure shows that the pendulum has
a stable attractor near the up-right position. So
the stability criterion of it given by the Mathieu
equation (12) is found to give the satisfied result.

4. SWING-UP AND STABILIZATION OF
PENDULUM BY USING AMPLITUDE
CONTROL

Stabilization of the pendulum in the neighborhood
of the up-right position has been discussed in
the previous section with the constant amplitude
excitation of the pivot, where the initial condition
is carefully chosen. The constant amplitude of
the periodic input for the stabilization should
be chosen to satisfy (19). It is emphasized that
the swing-up control is impossible with constant
amplitude excitation. Our control strategy is to
operate the amplitude of the periodic input such
a way that the energy of the pendulum is equal to
mgl, which is the potential energy at the stabilized
position. The designing procedure is based on the
energy of the controller. The control action is
derived in the followings.

For r = 0, the energy of the pendulum is

1 .
E = 5([ +ml?)6* + mgl sin . (20)

It is assumed that there is no friction. The time
derivative of the energy F is calculated as



(Z_Lf = (I +mi*)00 + mglf cos 0 (21)

Substituting eq(6) into eq(21) yields
dE
dt

= —miifl cos 6. (22)

—m(g + )10 cos  + mglf cos 0

It can be seen from eq(22) that the derivative of
E can be controlled by ii.

Let consider a candidate of Lyapunov function as

1
2
where Eo(= mgl) denotes the energy when the

pendulum is at the up-right position. The time
derivative of V is calculated as follows:

V= (E_EO)27

dv dE
E = (E - EO)E
= —(E — Eo)miilf cos 0 (23)

If the authors control the amplitude K of the
sinusoidal input as follows, then the derivative of
V' yields negative, so it will vanish as ¢t — oo.

i = K(2n f)? sin (27 ft) (24)
K =sgn((E — Eo) sin (27 ft)6 cos 0)r,

where sgn(z) =1 (xz > 0), sgn(z) = -1 (z < 0).
The control method (24) leads to dV/dt < 0
(V — 0). Hence E — Ejy, the pendulum can be
swung up.

4.1 Motion of the pendulum using amplitude control

Table 2. Simulation parameters

f[Hz] r[m] Iinitial condition dt[sec]
O[rad]
25.7 0.1 —7/2 0.00389

Our method shall be evaluated by extensive nu-
merical simulation. Simulation parameters are
listed in Table 2. dt = 1/(10f) denotes the sam-
pling interval in the simulation. Fig.3 shows the
simulation result. This figure shows the angle.

Fig.3 shows that the angle is converged 6 —
—37(= $m)[rad] after 6 [sec]. Using this control
method, the amplitude by eq(24) is not satisfying
eq(19).

Numerical simulation confirms that this control
method can swing up and stabilize the pendulum.
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Fig. 3. The simulation result with the condition in
Table 2. This figure shows that the angle is
converged § — —3m(= 3)[rad] after 6 [sec].

5. CONCLUSION

It is well known that a 1-link pendulum can be
kept around the up-right position by a periodic
excitation of the pivot, but its initial state needs
to set around the up-right position.

This report presents that the pendulum can swing
up from the pendant position to the up-right po-
sition by controlling the amplitude of the periodic
excitation so that the derivative of the criterion,
which is given by the squared difference of energy
of the pendulum from that of the up-right position,
is negative.

In the future, the authors should consider the
swing-up of the 2-link pendulum and apply to
the real systems. They are currently under exper-
iment.
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