
     

 
EIT IMAGE RECONSTRUCTION BASED ON GENETIC ALGORITHM  

VIA A TWO-STEP APPROACH 
 
 H.-C. Kim†, D.-C. Moon†, M.C. Kim††, S. Kim†††, and Y.J. Lee††† 
  †Dept. of Electrical Eng., Cheju National Univ., Cheju, 690-756, Korea, 

††Dept. of Chemical Eng. & Clean Tech., Cheju National Univ., Cheju, 690-756, Korea, 
†††Dept. of Nuclear and Energy Eng., Cheju National Univ., Cheju, 690-756, Korea, 

  
Abstract: In electrical impedance tomography (EIT), the internal resistivity distribution 
of the unknown object is computed with the boundary voltage data induced by 
different current patterns using various reconstruction algorithms. This paper presents 
a new image reconstruction algorithm based on genetic algorithm (GA) via two-step 
approach for the solution of the EIT inverse problem, in particular for the 
reconstruction of “static” images. The computer simulation for the 32 channels 
synthetic data shows that the spatial resolution of reconstructed images in the proposed 
scheme is improved compared to that of the modified Newton–Raphson algorithm at 
the expense of increased computational burden. 
 Keywords: Electrical impedance tomography, Genetic algorithms, Image 
reconstruction, Inverse problem. 

  
1. INTRODUCTION 

 
Electrical impedance tomography (EIT) plays an 
important role in monitoring tools for the process 
engineering such as biomedical, geological and 
chemical engineering, due to its relatively cheap 
electronic hardware requirements and nonintrusive 
measurement properties (Webster, 1990; Newell et 
al., 1987; Cheney et al., 1999). In EIT different 
current patterns are injected to the unknown object 
through electrodes and the corresponding voltages 
are measured on its boundary surface. The physical 
relationship between inner resistivity (or 
conductivity) and boundary surface voltage is 
governed by the nonlinear Laplace equation with 
appropriate boundary conditions so that it is 
impossible to obtain the closed-form solution for the 
resistivity distribution. Hence, the internal resistivity 
distribution of the unknown object is computed using 
the boundary voltage data based on various 
reconstruction algorithms. 
 
Yorkey et al. (1987) developed a modified Newton- 
Raphson (mNR) algorithm for a static EIT image 
reconstruction and compared it with other existing 
algorithms such as backprojection, perturbation and 
double constraints methods. They concluded that the 
mNR reveals relatively good performance in terms of 
convergence rate and residual error compared to 
those of the other methods. However, in real 
situations, the mNR method is often failed to obtain 
satisfactory images from physical data due to large 
modeling error, poor signal to noise ratios (SNRs) 
and ill-conditioned (ill-posed) characteristics. That is, 
the ratio between the maximum and minimum 
eigenvalues of the information matrix (or Hessian 
matrix) is very large. In particular, the ill-

conditioning of the information matrix results in an 
inaccurate matrix inverse so that the resistivity 
update process is very sensitive to the modeling and 
measurement errors. 
 
Genetic algorithms (GAs) have recently found 
extensive applications in solving global optimization 
searching problems (Goldberg, 1989). They are 
useful when the closed-form optimization technique 
cannot be applied. GAs are parallel, global search 
techniques that emulate natural genetic operators. 
Because a GA simultaneously evaluates many points 
in the parameter space, it is more likely to converge 
toward the global solution. It does not need to 
assume that the search space is differentiable or 
continuous, and can also iterate several times on each 
datum received. The GAs apply operators inspired by 
the mechanics of natural selection to a population of 
binary strings encoding the parameter space. At each 
generation, it explores different areas of the 
parameter space, and then directs the search to 
regions where there is a high probability of finding 
improved performance. By working with a 
population of solutions, the algorithms can in effect 
search for many local minima, and thereby increase 
the likelihood of finding the global minimum. Global 
optimization can be achieved via a number of genetic 
operators, e.g., reproduction, mutation, and crossover. 
 
The major difficulties in impedance imaging are in 
the nonlinearity of the problem itself and the poor 
sensitivity of the boundary voltages to the resistivity 
of the flow domain deep inside. Several researchers 
suggested various element or mesh grouping 
methods where they force all meshes belonging to 
certain groups to have the same resistivity values 
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(Glidewell and Ng, 1995; Paulsen et al., 1995).  
 
In this paper, we will discuss the image 
reconstruction in EIT based on GA via a two-step 
approach. We have broken the procedure for 
obtaining the internal resisitivity distribution into two 
parts. In the first step, each mesh is classified into 
three mesh groups: target, background, and 
temporary groups. The mNR algorithm can be used 
to determine the region of group. In the second step, 
the values of these resistivities are determined using 
genetic algorithm. The first GA searches for the 
optimal range of resistivities by generating and 
evolving a population of individuals whose 
chromosome consists of two real genes ( backρ  and 

)tarρ  representing the values of the unknown 
background and target group’s resistivity distribution. 
The second GA solves the EIT problem, searching 
for the resistivity values of meshes in temporary 
group. All meshes in temporary group can have 
different resistivity values. This two-step approach 
allows us to better constrain the inverse problem and 
subsequently achieve a higher spatial resolution. 

 
 
2. MATHMATICAL MODEL FOR EIT  

 
2.1 The forward model 
 
When electrical currents ( 1,..., )lI l L=  is injected 

into the object 2RΩ ∈  through electrodes 
( 1,..., )le l L=  attached on the boundary ∂Ω  and the 

resistivity distribution ( , )x yρ  is known over Ω , the 

corresponding induced electrical potential ( , )u x y  
can be determined uniquely from the nonlinear 
Laplace equation which can be derived from the 
Maxwell equation, Ohm’s law, and the Neumann 
type boundary condition. The complete electrode 
model takes into account both the shunting effect of 
the electrode and the contact impedances between the 
electrodes and the object. The equations of complete 
electrode model are 
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where lz  is effective contact impedance between the 

l th electrode and the object, lU  are the measured 
potentials and n is outward unit normal. In addition, 
we have the following two conditions for the injected 
currents and measured voltages by taking into 
account the conservation of electrical charge and 

appropriate selection of ground electrode, 
respectively. 
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The computation of the potential ( , )u x y  for the 

given resistivity distribution ( , )x yρ  and boundary 

condition lI  is called the forward problem. The 
numerical solution for the forward problem can be 
obtained using the finite element method (FEM). In 
the FEM, the object area is discretized into small 
elements having a node at each corner. It is assumed 
that the resistivity distribution is constant within an 
element. The potential at each node is calculated by 
discretizing (1) into Y cυ = , where N NY R ×∈  is so-
called stiffness matrix and N is the numbers of FEM 
nodes. Y and c are the functions of the resistivity 
distribution and the injected current patterns, 
respectively. 
 
 
2.2 The Tikhonov regularization method 
 
The inverse problem, also known as the image 
reconstruction, consists in reconstructing the 
resistivity distribution ( , )x yρ  from potential 
differences measured on the boundary of the object. 
The methods used for solving the EIT problem 
search for an approximate solution, i.e., for a 
resistivity distribution minimizing some sort of 
residual involving the measured and calculated 
potential values. From a mathematical point of view, 
the EIT inverse problem consists in finding the 
coordinates of a point in a N -dimensional 
hyperspace, where N  is the number of discrete 
elements whose union constitutes the tomographic 
section under consideration. In the past, several EIT 
image reconstruction algorithms for the current 
injection method have been developed by various 
authors. A review of these methods is given by 
Murai and Kagawa (1985). To reconstruct the 
resistivity distribution inside the object, we have to 
solve the nonlinear ill-posed inverse problem. The 
regularization techniques are needed to obtain stable 
solutions due to the ill-posedness. 

Generalized Tikhonov regularized version of the 
EIT inverse problem can be written in the form 

 
2 * 2( ) min{|| ( ) || || ( ) || }V U R

ρ
ρ ρ α ρ ρΨ = − + −    (5) 

 
where NRρ ∈ and *ρ are the resistivity distribution 

and a priori information of ρ , respectively. 

( ) LKU Rρ ∈  is the vector of voltages obtained from 

the model with known ρ , LKV R∈ are the measured 
voltages and R  and α  are the regularization matrix 



     

and the regularization parameter, respectively. L, K, 
and M are the numbers of electrodes on the surface, 
injected current patterns, and finite elements in FEM 
respectively. There are many approaches in the 
literature (Cohen-Bacrie et al., 1997; Vauhkonen et 
al., 1996; Adler and Guardo, 1996; Grootveld et al., 
1998) to determine R  and α, but the usual choice is 
to fix NR I=  and to adjust α empirically. 

 
Minimizing the objective function ( )ρΨ  gives an 
equation for the update of the resistivity vector 
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where the partial derivative of Ψ  with respect to ρ  
has been approximately by a Taylor series expansion 
around kρ . The Jacobian kJ  is a matrix composed 
of the derivative of the vector of predicted potentials 
with respect to the unknown resistivities. The 
Jacobian is derived from the finite element 

formulation given by 
k

kJ
ρρ

∂Ψ
=

∂
. The Hessian kH  

is the second derivative of the predicted potentials 
with respect to the resistivity. Since the objective 
function ( )ρΨ  is multimodal (i.e., it presents several 
local minima), the inversion procedure does not 
always converge to the true solution. The 
reconstruction algorithms are likely to be trapped in a 
local minimum and sometimes the best solution of a 
static EIT problem is rather unsatisfactory. 
 
 

3. IMAGE RECONSTRUCTION BASED ON GA 
VIA A TWO-STEP APPROACH 

 
In some applications like visualization of two-
component systems, we may assume that there are 
only two different representative resistivity values; 
one resistivity value for the background and the other 
for the target. In this paper, we will discuss the image 
reconstruction in EIT using two-step approach. We 
have broken the procedure for obtaining the internal 
resisitivity distribution into two parts. 
  
 
3.1 Step one – mNR method and mesh grouping 
 
In the first step, we adopted a mNR method as a 
basic image reconstruction algorithm. After a few 
initial mNR iterations performed without any 
grouping, we classify each mesh into one of three 
mesh groups: BackGroup (or TargetGroup) is the 
mesh group with the resistivity value of the 
background (or target). TempGroup is the group of 
meshes neither in BackGroup nor in TargetGroup. 
All meshes in BackGroup and in TargetGroup are 
forced to have the same but unknown resistivity 
value ( backρ  and )tarρ , respectively. However, all 

meshes in TempGroup can have different resistivity 
vaules ( , ,  1,..., 2temp i i nρ = − ). 

 
Let ( 1,..., )is i n=  be the resistivity distribution after 

this rearrangement. Then, the typical shape of is  
becomes the curve shown in Fig. 1 during the 
reconstruction process. In Fig. 1, it is natural to 
assume that meshes in regions I and III belong to 
BackGroup and TargetGroup, respectively. All 
meshes in region II can be classified into 
TempGroup. 
 
However, since we cannot always expect to get such 
a well-distinguished restivity distribution curve as 
shown in Fig. 1, it is useful to divide the regions and 
determine a typical resistivity value of each region. 
Let ( 1,...,3)i iρ =  be the representative resistivity 

value in each region and ( 1, 2)ik i =  be the boundary 
location between regions. Then, we can formulate the 
following optimiztion problem to determine iρ  and 

ik : 
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where 1 2 3 1 2( , , , , )x k kρ ρ ρ= , 0 1k = , and 2k n= . 
We solve the problem in (7) using the GA and the 
solution provides one way of dividing regions (Cho 
et al., 2001).  
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Fig. 1. Typical distribution of the sorted resistivity 
values during image reconstruction. 

 
 

3.2 Step two – Image reconstruction based on the 
genetic algorithm 
 

In the second step, a set (population) of EIT images 
is generated for the simplest implementation of GA 
in EIT. Each individual consists in a n -tuple of 
resistivity values ( n  is the number of elements 
discretizing the section under measurement), i.e., the 
EIT chromosome is a sequence of n  resistivities. 
After mesh grouping, in this paper, we will 
determine the values of these resistivities using two 
GAs. The first GA searches for the optimal range of 
resistivities by generating and evolving a population 
of individuals whose chromosome consists of two 



     

real genes ( backρ  and )tarρ , representing the 
BackGroup and TargetGroup values of the unknown 
resistivity distribution. All meshes in background and 
in target group are forced to have the same but 
unknown resistivity value ( backρ  and )tarρ , 

respectively. Furthermore, we will use backρ  (or 

tarρ ) as the minimum (or maximum) values of the 
unknown resistivity distribution. The second GA 
solves the EIT problem, searching for the resistivity 
distribution ,( ,  1,..., 2)temp i i nρ = −  minimizing the 

reconstruction error. The computed resistivities is 
constrained between the minimum and maximum 
values obtained in the first GA. 
 
A fitness value is computed for each individual. In 
the present case, the fitness function is the reciprocal 
of the reconstruction error, a function of the relative 
difference between the computed and measured 
potentials on the object boundary 
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where L  is the number of electrodes on the surface. 
The next stage is to rank the individuals on the 
fitness value, giving the fitter ones more chance to 
contribute to the successive generation. New 
individuals are then created by crossover 
(combination of couples of resistivity sequences) and 
mutation (low-probability random change of some 
resistivity value in the genome). 
 
After this stage, the chosen termination criterion is 
applied, i.e., we see if convergence has been reached 
(the residue is below a given value) or if the 
maximum number of generations has been exceeded. 
If convergence fails, the whole 
selection+crossover+mutation procedure is applied to 
the current population, otherwise the fittest 
individual is assumed as the solution of the EIT 
problem. The termination condition adopted here is 
based on evaluating the progress made by the 
algorithm in a predefined number of generations and 
terminating the search if the fitness of the best 
chromosome is above a threshold value. 
 
 

4. COMPUTER SIMULATION 
 
The proposed algorithm has been tested by 
comparing its results for numerical simulations with 
those obtained by the modified Newton–Raphson 
(mNR) method. For the current injection the 
trigonometric current patterns were used. For the 
forward calculations, the domain Ω  was a unit disc 
and the mesh of 3104 triangular elements (M=3104) 
with 1681 nodes (N=1681) and 32 channels (L=32) 
was used as shown in Fig. 2(a). A different mesh 
system with 776 elements (M=776) and 453 nodes 
(N=453) was adopted for the inverse calculations as 

shown in Fig. 2(b). In this paper, under the 
assumption that the resistivity varies only in the 
radial direction within a cylindrical coordinate 
system, the results of the two inverse problem 
methods can be easily compared. The resistivity 
profile given to the finite element inverse solver 
varies from the center to the boundary of object and 
is divided into 9 radial elements 1 9( ,..., )ρ ρ  in Fig. 
2(b). 
 
The resolution of the method is determined by a 
number of variables including restivity contrast and 
distribution, position within the domain, and even 
current patterns. The ability to positively distinguish 
between two similar resistivity distributions also 
depends upon the precision of the voltage 
measurements. These factors necessitate caution 
when designing an experiment and interpreting 
results. Therefore, to verify the appropriateness of 
EIT for this application, a computational experiment 
was conducted. 
 

 
(a) 

 
(b) 

 
Fig. 2. Finite element mesh used in the calculation. 

(The resistivities of the elements within an annula
r ring are identical.) (a) mesh for forward solver, 
(b) mesh for inverse solver. 

 
 
Synthetic boundary potentials were computed for 
idealized resistivity distributions using the finite 
element method described earlier. The boundary 
potentials were then used for inversion and the 
results were compared to the original resistivity 



     

profiles. The resistivity profile appearing in Fig. 3 
has a step change at /r R =0.43. The inverted profile 
using mNR method matches the original profile very 
well near the boundary of the object at /r R =1 and 
the jump in resistivity was located successfully. 
However, the inverse method using mNR searches 
for a resistivity profile which is smooth, which 
explains the deviation near the center at /r R =0 and 
the boundary of target and background at /r R =0.43. 
 
We started the mNR iteration without any mesh 
grouping with a homogeneous initial guess. In Table 
1, we see that the mNR algorithm may roughly 
estimate the given true resistivities. Since the mNR 
have a large error at the boundary of target and 
background in Fig. 3, we can not obtain 
reconstructed images of high spatial resolution. This 
kind of poor convergence is a very typical problem in 
the NR-type algorithms.  
 
However, we can significantly improve the mNR’s 
poor convergence by adopting the proposed GA via a 
two-step approach as follows. 
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Fig. 3. True resistivities (solid line) and computed r

esistivities using mNR (dashed line) and GA (dot
ted line).  

 
 

Table 1. True resistivities and computed resistivities 
using mNR and GA 

 

 
 
 In the first step, we adopted a mNR method as a 
basic image reconstruction algorithm. After a few 
initial mNR iterations performed without any 
grouping, we classify each mesh into one of three 
mesh groups. After the mesh grouping in (7), we 
could obtained the following result that 2 meshes 
( 2 3,ρ ρ ) and 5 meshes ( 5 6 7 8 9, , , ,ρ ρ ρ ρ ρ ) among 9 

are grouped to TargetGroup ( )tarρ  and BackGroup 

( )backρ , respectively. The remainders of meshes 

1 4( ,  )ρ ρ  are grouped to TempGroup. Hence, the 
number of unknowns is reduced to 4. 
 
In the second step, after mesh grouping, we will 
determine the values of these resistivities using two 
GAs. The first GA searches for the optimal range of 
resistivities by generating and evolving a population 
of individuals whose chromosome consists of two 
real genes ( backρ  and )tarρ , representing the 
BackGroup and TargetGroup values of the unknown 
resistivity distribution. Furthermore, we will use 

backρ  (or tarρ ) as the minimum (or maximum) values 

of the unknown resistivity distribution. 1ρ  and 3ρ  in 

(7) are used the initial value of tarρ  and backρ  in 
BackGroup and TargetGroup, respectively. Table 2 
shows the computed resistivities as a function of the 
population size at generation 200. The reconstructed 
errors at a given generation generally decrease when 
the population size is increased. Hence, even if error 
does not depend linearly on the population size due 
to the stochastic nature of GA’s, 40 or 60-individual 
GA reconstruction gives a higher spatial resolution 
than a mNR method. 

 
Table 2. True and computed resistivities using GA vs 

population size at generation 200 
 

backρ  tarρ  Pop. 
size True Computed True Computed 
20 0.5 0.4898 0.6 0.6000 
40 0.5 0.5051 0.6 0.6001 
60 0.5 0.4998 0.6 0.6039 

 
 
The second GA solves the EIT problem, searching 
for the resistivities of remainders 1 4( ,  )ρ ρ  
minimizing the reconstruction error. The computed 
resistivities in this second GA is constrained between 
the minimum and maximum values obtained in the 
first GA. In Fig. 3, the inverted profile using GA 
matches the original profile very well near the wall at 

/r R =1.0 as well as the center at /r R =0.0. 
Furthermore, the GA reconstruction is practically 
perfect for the jump of resistivty at /r R =0.43.  
 
 

4. CONCLUSION 
 
In this paper, an EIT image reconstruction method 
based on GA via two-step approach was presented to 
improve the spatial resolution. A technique based on 
two binary-coded GA’s with the knowledge of mNR 
was developed for the solution of the EIT inverse 
problem. One GA calculates the resistivity values of 
target group and background group, and the other 
GA is used to search for the resistivities of 
remainders. Although GA is expensive in terms of 
computing time and resources, which is a weakness 

 1ρ  2ρ  3ρ  4ρ  5ρ  6ρ  7ρ  8ρ  9ρ  

Real 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 
mNR .516 .495 .489 .535 .594 .604 .599 .601 .600 
GA .505 .505 .505 .600 .600 .600 .600 .600 .600 



     

of the method that renders it presently unsuitable for 
real-time tomographic applications, the exploitation 
of a priori knowledge will produce very good 
reconstructions. Further extensions include an EIT 
image reconstruction to multi-resistivity value 
problems. 
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