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Abstract: The delay-dependent robust Hitering for uncertain state delay system is addressed in
this paper. The parameter uncertainties are time-varying and unknown but norm-bounded. The
present robust filtering methods for time-delay system are nearly all independent of time-delay,
which is conservative, and often can't reflect the characters of system accurately. Therefore, to
design the delay-dependent filtering method is significant. Based on appropriate Lyapunov function,
the necessary condition that the satisfactory filter exists is given by the form of LMI, and the
concrete expression of filter is also obtain€@dpyright © 2002 IFAC
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kind of robust H,, filtering algorithm for uncertain
1. INTRODUCTION linear systems described by the so-called integral

. . . quadratic constraints. Yang (see Yaetgal, 2000)
In th_e past decade, thel,, filter de_5|gn rece_|ved a designed reduced-order robudd, filtering for
considerable amount of attention. Unlike the

. . . system with parameters uncertainty.
conventional Kalman filter,H . filter does not need ys P ¥

the statistical information on noise, and the onIyBut the above systems they researched contain no
requirement for the noise is that it has bounded energ%e_delay In fact, many systems, especially

The H,, norm, Wh'.ch r(_aﬂects_ the wor st-case gain Ofindustrial process contains time delay and parameter
the system, is minimized inH, filter design,

. uncertainty. The time delay and parameter uncertainty
therefore the filter tends to have good robust Propeytien causes system unstable, and the filter design for

Owning to the widespread uncertainties of system, systems is more difficult. Pila (see Péa

model and noise disturbance, robust, filtering al.,1999) investigated theH, filtering problem for

for uncertainty system has emerged. To solve rObu"ﬁhear system with time-delayed only in measurement,

H., filter design problem, algebraic Riccati equation g the system contains no uncertainty. However, the

(ARE) approach, see (Fet al, 19.92 qnd Zhang, filter they obtained is delay-independent, and we find
1999). for norm-bounded uncertainty is most ofte hat most of papers about robust filtering for

used_. But for complex_system su_ch a_s_with high'Ordeﬁme-delay system are delay-independent. But this
or with some constraints, ARE is difficult to solve. kind of filter is too conservative, and it can’t reflect

Recently, linear matrix inequalities (LMIS.) approac_hthe characteristic of system accurately. Considering
have emerged as a powerful computational des'gl'i]\at infinite time delay is scarce, and it's always

tool mt ?_yste:n f?n_d contro(lj l‘fllelqb_tl>_ttecause gthhe'trbounded in real process, we want to construct a kind
computational efficiency and flexibility, see(Gahine of delay-dependent filter in this paper.

et al,1994 and Iwasaket al,1994). Using LMIs
approach, Li and Fu (see Et al, 1998) designed a



After constructing a Lyapunov function, we obtain the
criterion that a given delay-dependent filter can
satisfy the H,, norm constraint. Then we give the
sufficient condition that the set of satisfactory filters
is nonempty, and we a so give the parameterization of
all such satisfactory delay-dependent filters which can
guarantee the H, norm congtrain. Another main
advantage of this method we develop is that it can
produce reduced-order filter easily. The reduced-order
filter would reduce computation complexity and
improve computation speed, and it is superior to the
filter with full-order. In this paper, we use the tool of
LMI technology, and there are some effective
algorithms such as dternating projection agorithm to
solve it. A numerica example will be included to
demonstrate the advantages and effectiveness of the
method.

The notation to be used isas follows. The H, norm
of a rationa transfer function T(s) is denoted by
[T(s)],,- Given a red Nxm dimensiona matnx
Q withrank I ,the orthogonal complement Q is

defined as (n—r)xn matrix that satisfies Q"Q =0.

The notation A>(<)B means tha A-B s
positive (negative) definite matrix.

2. PROBLEM FORMULATION

Consider a stable linear system with state delay and
parameter uncertainties

X(t) = (A+DA)X() + (Ag + DA (D)X(t - T)

FBWD.  x(to) = o 0

y(t) = (C +AC(1))x(t) + Dw(t) @
Xt)=¢@t), tO[-7,0] (3

where x(t)is N- dimensiona state vector, y(t) is

the measured output, and w(t) is a disturbance vector
containing both process and measurement noise. 7
is the time delay item. A A4,B,C,D are known
matrices that describe the nominal system, and
AA AA;,AC are redl continuous functions, which
denote the uncertainties. In this paper the admissible
uncertainties are assumed to be of the form

OAA() O M, DO

A (D= M LE N e

DAC(t) D 5\/1 3
and M{,M,,M3,N are known constant matrices of
appropriate  dimensions. F(t) is an uncertain
time-varying matrix bounded by

FTOF@)<I (5)

The r-dimensional signa to be estimated is

2(t) = Lx(t) (6)
In this paper, we focus on the design of robust linear
estimator for Z with guaranteed performance in the
sense of H, norm of transfer function from the
noise w(t) to the estimated error. More specificaly,

we want to design alinear filter

X =GR+ Hy )

7Z=Jx+Ky (8)
where X isan N-dimensiona state vector of filter,
Z istheestimateof z(t). And the estimation error
is

e=z-2 9)

which will satisfy that the H,, norm of the transfer
function T,. from disturbance w to estimation
eror €,isdrictlylessthan y . Thatis

Twel, <v

So thefilter isalso caled as y -suboptimal filter.

(10)

3. MAIN RESULTS

Gathering dl parameters of filter into the single
variable

J EI
= (11)
H—' cH
and the augmented system can be changed into
X(t) = (A+E,OC)X(t) + AyX(t—7)+ (B + E;OD)w
P
e=z-2=(L+E,OC)x+(E,OD)w (13)

where
_D<D7D\+AAOD—|])0D—
XTHH A o 57 BJD’
_ [C+AC OD — [DO
=0 il =00 . L—[L q ,
oo I EDD
— A\ +AA, OO ~ Ay OO
E,=[-1 0 = = ,
> =] | A E 0 OE Ay EO od
-~ [C 00 -~ [A 0O [AA 0O R
- |:|1 - I:l’ I:l I:l_ !
Eb | H) og' Mo og !
oo — cC oo —
EW E:MZFN , %ﬁ E:MSFN ,
0o 0 00 0f
n=E,OoM,.

Lemma 1: (Gahinet et al., 1994 and Iwasaki et
al.,1994) Given a symmetric matrix ¢OR™™ and
two matrices P and Q of column dimenson m,
consider the problem of finding some matrix © of
compati ble dimensions such that
p+PTOTQ+Q'OP<0 (14)
Denote by Wp,Wg any matrices whose columns

form bases of the null bases of P and Q
respectively. Then (10) issolvable for @ if and only
if
BVe yWp <0
QWWg <0

In this case dl solution matrices © are
parameterized by

O=-RIPTQ'Q+ o B/\%
where T,R and [ arefree parameters subject to
T=(PR'PT -9 >0, R>0, |g|<1



and Q and A aredefined by
Q=R*'-RP(T-TQ"AQT)PR™?
A=@QTQ")™.

Lemma 2 The matrix

g-0A cO

€7 BJ

where A=A, - A,A;AL, B=By,—BuBLBY,
A, A, B, B, ae symmeric matrices and
A,,, By, aenegative matrices, is negative definite if
and only if

oQ

O
0 Oco
B, U

O
By,0

Py A, C
A A, O
ECT 0 By

B

0o 0
Proof: Using the property of Schur complement, the
inequality (15) can be easily derived. m|
Next, we will give the criterion that a given
dday-dependent filter can satisfy the H_, norm
constraint.
Theorem 1. A given filter © of uncertain system
(1-(3), can satisfy [T, <y . if there exists
parameters & (i =12,---,7) and a positive definite
matrix P such that the following LMI holds .

(15

[or a, O
e=0s P [<O0 (16)
12 ~0220

where
ay, = P(A+E,0C +Ay)+(A+E,0C+A;)" P

+(g +Ey+E4+20E, +TE; +26)NTN
ay, =[PE,OM5 (A+E,0C)T (L +E,0C)"

PM, A] PA, PA,NT PM, PB]
a,,=diade;'1, S, S,, 671,50, 1(1 —&sM,M)) ),

31 Jeg! ~NN") 351, 4?1 -BB' ~2(E,ED)" (E,D)]

S, =1[l —&,M M - &,E,OM;(E;0M3)"]

S, =7 _57E2@M3(E2@M3)T] .

Proof. In order to make the augmented system (12)
stable, we construct the Lyapunov function

V(X,t) = X" PX +W(X,t) (17)

where
WX, = [0 i,y X' (A () Ap(S)X()dsH
+_[?,_|':_Hg rd (S)AI (s+ r),&j (s+7)X(s)dsdd
+I?r ftt+e w' (9)B" (5)B(s)W(s)dsck

Ao(t)=A+EOC, A=A, B=B+EOD.
Owningto X(t-7) = x(t) - J’_O X(t+6)dg, weobtain

V(x 1) =X (()PX(t) + X" (H)PX(E) +W(t)

=T [P(Ry + Ay) + (B + Ag) PR-227 PR, ()
qi{ﬂo(t+0)x(t+0) + Ay (t+O)X(t—T +6)

+Bw(t +8)}d6 +X(t) T PBW(t) + W' ()BT PX(t) +W(t)

WD) =" A OAOXO+X OA] t+7)
Ay (D)) + ' ()BT OBOWE) — [, X' (+6)0
A (t+6) Ayt +O)X(t+6)d0~ [ X" (t-T+6)A] (t-T+6)
By (t-7+OX( -7 +6)do- [ W' (t+6)BT (t+6)
B(t +O)W(t +6)do
It's obvious that
B=-2X"PAy (1) [ { Ao t +O)x(t +6)
+ A (t+O)X(t -7 +6)+Bwt +6)}do
- & (t+6)A] (t+6) Ayt +O)X(t+6)do

- X7 (t-T+O)A] (t-T+6) Ay (t-T+O)X( -7 +6)dO

-2 W (t+6)BT (t+6)B(t +E)w(t +6)de
-3x" (t)PA, (1) A] (1)PX(t) <O
Therefore

V(X1 S @X,t) =XT [P(Ay +A) +(Ay + Ag)T PR
+1XT (AT () Ay X() + X" (V) A] (t+7)Aq (t+7)X(1)
+1wT (£)BT (t)B(t)w(t) +3X" (t)PA (t) A] (t)PX(t)

We can construct following function.
_Lr d T (P
J_Jg’ge—mwatvat)@t K P
GOMEED (+BED) (L+EED) EED) I
< t _ T M 1
B €y een (Ezea)T(Ezea)—fl%EFj
So we can draw aconclusion that if
@(X,t)+2xX" (L +E,OC)T (L +E,OC)x+ (18)
w' [2(E,©D)" (E,OD) - y?1lw<0
9= (L+EEQ) (L+EEC) (L+EE0) (B
B (EGD)'(L+EL0) -(E,8D)" (E,6D)
then J(X,t) <O.

It is obvious that Z < 0. Then the only condition is
(18) holds. Considering the uncertainties, we obtain

P(’&O +Ad)+(/&o +/&d)T P < P(AO +E_1®é +Ad)
+(Ag+ E,0C+A,) TP+ 1PM, M, P+
£;'PE,OM 5(E,.OM 3) T P+ £ PM ;M4 P +

(61 + €, +e5)NTN



TM ;0 < T(A"' Eleé)T[l _54“7]_'\7; -

£,E,0M4(E,0M ;)" *(A+E,0C) +21¢ ,NTN

AT Ay STAT[I —esM M2 12 Ay + 165N TN

3PA] AP <3PA;A]P+3PA;NT (651 -NNT)™
x NA] P +3,PM,M ] P

(L+E,oC)™ (L +E,0C) < (L +E,0C)[I
- 57 E26M3 (E26M3)T] _1(E+ Ez@é) + 57_1NT N

Considering Lemma 3, the following inequdity can
be tested

o(x,1)+2x" (L +E,OC)" (L + E,0C)x +
w'[2(E,0D)" (E,OD) -yl w<a

We know that J(X,t) <O if there exist parameter
&§(01=123---7) and P , sdisfying the LMI
a<0. O
From theorem 1, we get the condition (16) under
which the given filter © is y -suboptimal filter.
Now we will discuss the condition that the set of such
filter © satisfying |T,[, <)y is nonempty, which
isjust the condition that (16) exists.

Theorem 2: The set of filter © satisfying

(20)

d
d
od
DY
d

IH

S = (A A X+ X(A+A) +(e1+62 %65
+218, + 165 + 265 ) XNTNX + £

pi

where V =

ooooo,

o Dlw—c

S, =Y(A+AY)+(A+A))TY +(& +&, +&5
+218, + 165 + 267 )YNTNY + £,

Zl:P(A+Ad)+(A+Ad)TP+(£1+£2+£3

+216, +165 + 261 )NTN + £,
Z,=~(e'—&") , Z3= _T(%_54'\71'\71T) ,
Z,=(-1+g" ,  Z;=-05/’1+B'B
Zs =—& ,Z, =-&3M , Zg=-1(1 —&M LM, ),
Zg=-3l, Z;o=-3(6l ~NNT), Z;; =-3¢l.
Proof: From theorem 1, set of filter © satisfying
[Twell, <y is nonempty if there are parameters

&(@{=12---8)and a positive matrix P satisfying
(16). Notice that (16) can be rewritten as

[Twell, <v isnonempty, if there exists an admissible S=rOm+(rom' +p+p<0 1)
parameterse; (i =1,2,3,-++,8), and matrices0< X <Y, \uper
such that the following LMIs exist r={(PE)T 0 0 Ef 00000 O]T’
BS_ O[XAqB'Vh'Vb[X%(J[quAuNMzS m=|[C Mg 0 0 D 0 0 0 O O 0,
DoTzzoooo 0o 0 00B 02, OAUPBFMHVEAPAFA’TFMB
XATq040000 0 0 of 0% 20000 000 0 oF
oB 0 0 %00 0 0 0 0p O 0zo0o0 0 000 o0 o0U
OM o0 0 o0 0 o0 o o0 oU o - % 0
0 'VhT % %0 OL 00z 00 000 0 00
oM 0 0 00Z 0 0 0 05 Y 000z 0 000 o of
T _
%x,quo 0 000 4% 0 005 gy co0002 000 0 00O
w9 0o o0 000 0 % 0 0O gAMy 0000 0z 00 0 of
DN'§000000 0 2z, 0f BA] 00000 020 0 ol
HM 0 0 000 0 0 0 Zf PR 0000 0 0 02z 0 0f
(19) %ﬁ(mdf 0000 O 0 0 0 Z OB
M)’ 0000 O O OO 0
0S OVBAQU YMYMIA QVAYAYVMD “E
50 z0 0 00 0 0 0 O Of 0z, 0 (EEd) 0 0o o
y® 0z 0 00 O O O O o% no 7 0 -(EemM,)” o
fAgd 002z 000 0 0 0 0p Fec 0 7 0 0
OL oo 02zo0o0 0 0 o0 o0 _ 5O “EOM O P TEOD
- (g $=50 0 0 -(E,©D) Z 0
VYT 00 0 0Z 0 0 0 0 0dv< [ .
Hy" 00 0 002z 0 0 0 Of : )
MQgoo 0 00 0 Z 0 0 0O 0o 0
Qv 00 0 00 0 0 z 0 of 0
N 00 0 00 O O 0 Z OE
M 00 0 00 O O O 0 Z

where Z, =-¢;'d, Z, =-&7'1,

o

o o
OOooooOooooooood



——/l +£,1E,0M4(E,0M )T,
Z, =-1 —g3'l +2¢,E,0M4(E,OM,)",
== VI +BEED) +ECDB' +2ELD) ED)

éii 0 0 0 0 0 og
0 Z -(EOW) -EeM) 0 0
P OEM 7 0 B g
_-EeM, 0o  Z  -F 0
9= o -(EED) -EED) Z 0 of
@) 0 0
0 O
O 0
) 0 od
O O
O O
where Z, =-g;d 22 =-g1,

L= -£,1(HEC)EEQ),

Z, = &5 — &7(E,0M3)(E,0M3) ",

Zs = —¢4(E,0D)" (E,@D) .

owning to Zg <0, then must exist a 1>¢&; >0
such that

-% y?1 +B(E,0D)" +(E,0D)B" +2(E,0D)"
x(E,@D) < —£(E,OD) " (E,©D)
Choose suitable &7 >0 such that
I _87[E2G)M (EzOM ) + EzeC(EzeC) ] > 0
0
-1 —& +&E,0M,3(E;0M5)" < ¢, (E,EC)(E,00)"
It can be testified that

(Z<&50,
Then <0, if
roemr+em’ +p<0.
We know that
= O
Elg 0
0 O
o - g 0o
r = 0 O 0
E,§ O
2
O
d g
= -1
EPElgU og o0 0 o0 OI:EP 00 OB
whereq 0 g mo | 0 on
= o1 o0 o
o O o o | oO
o— o0 B o0 0 | o% 0
BE, @ 0 0 0 If
T F O
. 0 00 00O
0@ o 5 00 0 .
0,0 5T O 0Ol 0O OD
Ms O O 0000 IO
OUo O =0 o 0 | 0
DO o O 0 o 0 | I 0 0 0 Op
Doo 4o 001 0 oO
HSTD 0 0
u J 000 I 0F
0 0
ay vy, EI X0
Let P=pg, Ptz 25 P>0
12 22|Z| El%’(lz X220

would lead to Y- X =Y,,YY,5 20 , therefore
0< X £Y. According to Lemma 1, (19) and (20)
follow immediately. m|
Remark 1: If rank(Y,,) =A< n, this method is
a so suitable for the design of reduced-order filter.

Theorem 3: Correspond to a feasible matrix pair
(X,Y), dl Nth —order filter ©, which satisfying
[Twe| <y, are given by

(G HO

o=0 D:—R‘erTnT/\m%ﬁ/\% (22)
d K@
where I':[I'lT I'ZT]T,n=[q 7).
0 gD ¢" 0,
o= Ep (02+|D E¢ -|B
EPElec+(E190)TP PE,GD (E,0C)" B
¢:D 0 0 0 O
D (@EoM,)TP 0 (FE0M,)'H
B 0 0 0 B

and T,R and B arefreeparameters subject to
T=CRT' -9 7">0, R>0, |B]<1

and Q and A aedefined by

Q=RI-RI (T -Tr"AmT)rR™?

A=(mm)™?

Remark 2: The upper bound on the H,
performance may be conservative, and we can reduce
the conservative upper bound to obtain the optimal
upper bound by solving optimization problems.
y (23)

min
£ (i=1,--8),0<X <Y

4. EXAMPLE
In this section, a numerical example is presented to
demonstrate the effectiveness of the proposed
goproach. Consider the uncertain time-dday system
(2) with parameters as follows:

#1110 F1-0040 _ 02 0O
A=n .0 A= 0 B=pg ,
0o 1 20 00 0.01g
00 _ (301137 -02226
E) 1B P"Hot69s -04118
1 00 . 1 0O @O 00
Ho 01 " "Ho ol " " o034
M5 00 01 -0050
M, =p 0 Mz;=( 0 f(t) =sint,
00 0.1g 00 02

wW(t) iszero mean Gaussian white noise process with
covariance | andthe H, filtering problemwith
an atenuation level y =0.6. Using the theorem 1,
we choose the filter parameters as follows
& =2, =03, &=1, =05,
£ =23, £,=05, £ =038

&5 =0.01,

J 0
When 7 =80, weobtain § = E" there
{



error of z2

error of z1

_ [3.9514 0.28860
0.2886 1.11480]

%7333 0.2195]
0.2195 517251’

_001104 -0024Q) _[-00004 001120
'"Hoo226 00649 '~ H-00055 -00009]

_ 300000 0.000Q . _[-1000 0.000Q]
(| 1~ O
H00003 00116] ' ~ {00337 -1.200]

The estimated errors of signa z and z, can be
seen in following figures. We denote it as case |,
which are caused by thefilter ©, .

J
Ky I g, where
H"H GO

[0.1219 000261 _ _[183582 0.0636]
= ! Y = !
[0.0026 04481 = 00036 66654
02167 -00830 . _[0.0063 011220
Ki=0 , Jiy = _
H00293 00647 0.1122 -0.0325]
300039 000821 _ _[309989 —00028)
n=u |
H01102 00594] H01667 -11360]

In order to compare the results with the ones of filter
O, . We consider the results of filter ©,, when

When 7=08,weget O, =

7 =80. And estimated errors of signa z and z,
can also be seen in following figures.

20 40 60 80
t/s

100

Fig. 1: filtering error €,

Fig. 2: filtering error €,

These figures reflect the importance of
delay-dependence. When we use the filter O, ,
which is obtained under 7=08, to sove the
filtering problem with 7=80 , the filtering
performance is worse than the one of ©,, , which is
obtained under 7=80 Therefore  the
delay-independent is conservative, and
delay-dependent filter would be superior to it.

Using theorem 2 and theorem 3, we can aso get

reduced-order  filter. For 7=08 , the
one-dimensional filter ©,,, weobtainis asfollows
001192 -0.02481 ~[00.0057 O
L oo 0. J9=g ;
T 0.0188 0.0609 T 0.015

H =[0.1111 -0.088§,G = -0.3300

Substituting these filter parameters into (12) and (13),
we find tha the one-dimensiona filter ©,,, has
good robust property and it meets the H,, norm
constraint.

5. CONCLUSION

A method to design delay-dependent filter has been
developed. The system we addressed is linear system
with time vary parameter uncertainties. The method
we proposed can avoid the conservative property of
traditional time-independent method, and can cause
high precison. A numericd example clearly
demonstrated the effectiveness and the advantage of
our gpproach.
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