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Abstract: The delay-dependent robust H�  Filtering for uncertain state delay system is addressed in 

this paper. The parameter uncertainties are time-varying and unknown but norm-bounded. The 

present robust filtering methods for time-delay system are nearly all independent of time-delay, 

which is conservative, and often can’t reflect the characters of system accurately. Therefore, to 

design the delay-dependent filtering method is significant. Based on appropriate Lyapunov function, 

the necessary condition that the satisfactory filter exists is given by the form of LMI, and the 

concrete expression of filter is also obtained. Copyright © 2002 IFAC 
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1. INTRODUCTION 

In the past decade, the ∞H  filter design received a 
considerable amount of attention. Unlike the 
conventional Kalman filter, ∞H  filter does not need 
the statistical information on noise, and the only 
requirement for the noise is that it has bounded energy. 
The ∞H  norm, which reflects the worst-case gain of 
the system, is minimized in ∞H  filter design, 
therefore the filter tends to have good robust property. 
Owning to the widespread uncertainties of system 
model and noise disturbance, robust ∞H  filtering 
for uncertainty system has emerged. To solve robust 

∞H  filter design problem, algebraic Riccati equation 
(ARE) approach, see (Fu, et al., 1992 and Zhang, 
1999).  for norm-bounded uncertainty is most often 
used. But for complex system such as with high-order 
or with some constraints, ARE is difficult to solve. 
Recently, linear matrix inequalities (LMIs) approach 
have emerged as a powerful computational design 
tool in system and control field because of their 
computational efficiency and flexibility, see(Gahinet 
et al.,1994 and Iwasaki et al.,1994). Using LMIs 
approach, Li and Fu (see Li et al., 1998) designed a 

kind of robust ∞H  filtering algorithm for uncertain 
linear systems described by the so-called integral 
quadratic constraints. Yang (see Yang et al., 2000) 
designed reduced-order robust ∞H  filtering for 
system with parameters uncertainty. 
 
But the above systems they researched contain no 
time-delay. In fact, many systems, especially 
industrial process contains time delay and parameter 
uncertainty. The time delay and parameter uncertainty 
often causes system unstable, and the filter design for 
such systems is more difficult. Pila (see Pila et 
al.,1999) investigated the ∞H  filtering problem for 
linear system with time-delayed only in measurement, 
and the system contains no uncertainty. However, the 
filter they obtained is delay-independent, and we find 
that most of papers about robust filtering for 
time-delay system are delay-independent. But this 
kind of filter is too conservative, and it can’t reflect 
the characteristic of system accurately. Considering 
that infinite time delay is scarce, and it’s always 
bounded in real process, we want to construct a kind 
of delay-dependent filter in this paper.  
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After constructing a Lyapunov function, we obtain the 
criterion that a given delay-dependent filter can 
satisfy the ∞H  norm constraint. Then we give the 
sufficient condition that the set of satisfactory filters 
is nonempty, and we also give the parameterization of 
all such satisfactory delay-dependent fi lters which can 
guarantee the ∞H  norm constrain. Another main 
advantage of this method we develop is that it can 
produce reduced-order filter easily. The reduced-order 
fil ter would reduce computation complexity and 
improve computation speed, and it is superior to the 
fil ter with full-order. In this paper, we use the tool of 
LMI technology, and there are some effective 
algorithms such as alternating projection algorithm to 
solve it. A numerical example will be included to 
demonstrate the advantages and effectiveness of the 
method.  
 
The notation to be used is as follows. The ∞H  norm 
of a rational transfer function )(sT  is denoted by 

∞
)(sT . Given a real mn×  dimensional matrix 

Q  with rank r , the orthogonal complement ⊥Q  is 
defined as nrn ×− )(  matrix that satisfies 0=⊥ QQ . 
The notation BA )(<>  means that BA−  is 
positive (negative) definite matrix. 

2. PROBLEM FORMULATION 

Consider a stable linear system with state delay and 
parameter uncertainties 
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where )(tx is n - dimensional state vector, )(ty  is 
the measured output, and )(tw is a disturbance vector 
containing both process and measurement noise. τ  
is the time delay item.  DCBAA d ,,,,  are known 
matrices that describe the nominal system, and 

CAA d ∆∆∆ ,, are real continuous functions, which 
denote the uncertainties. In this paper the admissible 
uncertainties are assumed to be of the form  
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and NMMM ,,, 321  are known constant matrices of 
appropriate dimensions. )(tF  is an uncertain 
time-varying matrix bounded by 

ItFtF T ≤)()(             (5) 

The r -dimensional signal to be estimated is 

)()( tLxtz =             (6)  
In this paper, we focus on the design of robust l inear 
estimator for z  with guaranteed performance in the 
sense of ∞H  norm of transfer function from the 
noise )(tw to the estimated error. More specifically, 

we want to design a linear filter 
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KyxJz += ˆˆ                (8) 
where x̂  is an n -dimensional state vector of filter, 
ẑ  is the estimate of )(tz .  And the estimation error 
is  

zze ˆ−=                  (9) 
which will satisfy that the ∞H  norm of the transfer 
function weT  from disturbance w  to estimation 
error e, is strictly less than γ  . That is 

γ<∞weT               (10) 

So the filter is also called as γ -suboptimal filter. 

3. MAIN RESULTS 

Gathering all parameters of fil ter into the single 
variable 
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Lemma 1: (Gahinet et al.,1994 and Iwasaki et 
al.,1994) Given a symmetric matrix mmR ×∈φ  and 
two matrices P  and Q  of column dimension m , 
consider the problem of finding some matrix Θ  of 
compatible dimensions such that  

0<Θ+Θ+ PQQP TTTφ       (14) 
Denote by QP WW ,  any matrices whose columns 
form bases of the null bases of P  and Q  
respectively. Then (10) is solvable for Θ  if and only 
if  
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In this case all solution matrices Θ  are 
parameterized by 

2
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where RT,  and β  are free parameters subject to 
0)( 11 >−= −− φTPPRT , 0>R , 1<β  



and Ω  and Λ are defined by 
111 )( −−− Λ−−=Ω PRQTTQTPRR TT  

1)( −=Λ TQTQ . 
Lemma 2 The matrix  
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22112211 ,,, BBAA  are symmetric matrices and 

2222,BA  are negative matrices, is negative definite if 
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Proof: Using the property of Schur complement, the 
inequality (15) can be easily derived.            
Next, we will  give the criterion that a given 
delay-dependent filter can satisfy the ∞H  norm 
constraint.  
Theorem 1: A given filter Θ  of uncertain system 
(1)-(3), can satisfy γ<

∞weT , if there exists 
parameters )7,,2,1( �=iiε  and a positive definite 
matrix P  such that the following LMI holds . 
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Proof. In order to make the augmented system (12) 
stable, we construct the Lyapunov function 
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We can construct following function. 
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It is obvious that 0≤ϑ . Then the only condition is 
(18) holds. Considering the uncertainties, we obtain  
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Considering Lemma 3, the following inequality can 
be tested 
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We know that 0),( <txJ  if there exist parameter 
)7,,3,2,1( 	=iiε  and P , satisfying the LMI 

0< .                                   
From theorem 1, we get the condition (16) under 
which the given filter Θ  is γ -suboptimal fil ter. 
Now we will discuss the condition that the set of such 
fil ter Θ  satisfying γ<∞weT  is nonempty, which 
is just the condition that (16) exists. 
Theorem 2: The set of fil ter Θ  satisfying 

γ<∞weT  is nonempty, if there exists an admissible 
parameters )8,,3,2,1( 
=iiε , and matrices YX ≤<0 , 
such that the following LMIs exist 
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Proof:  From theorem 1, set of fi lter Θ  satisfying 
γ<∞weT  is nonempty if there are parameters 

)8,,2,1( �=iiε and a positive matrix P  satisfying 
(16). Notice that (16) can be rewritten as 
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YX ≤<0 . According to Lemma 1, (19) and (20) 

follow immediately.                         
Remark 1: If nnYrank ≤= ˆ)( 22 , this method is 
also suitable for the design of reduced-order fi lter.  
 
Theorem 3: Correspond to a feasible matrix pair 
( YX , ), all n̂ th –order filter Θ , which satisfying 

γ<weT , are given by  
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and Ω  and Λ are defined by 
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Remark 2: The upper bound on the ∞H  
performance may be conservative, and we can reduce 
the conservative upper bound to obtain the optimal 
upper bound by solving optimization problems.  

γ
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4. EXAMPLE 

In this section, a numerical example is presented to 
demonstrate the effectiveness of the proposed 
approach. Consider the uncertain time-delay system 
(1) with parameters as follows: 
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)(tw  is zero mean Gaussian white noise process with 
covariance I  and the ∞H  fil tering problem with 
an attenuation level 6.0=γ . Using the theorem 1, 
we choose the fil ter parameters as follows 

21 =ε , 3.02 =ε , 13 =ε , 5.04 =ε , 01.05 =ε , 
3.26 =ε , 5.07 =ε , 8.08 =ε  

When 80=τ , we obtain 
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, where  
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The estimated errors of signal 1z  and 2z  can be 
seen in following figures. We denote it as case I, 
which are caused by the fi lter IΘ .  

When 8.0=τ , we get 
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In order to compare the results with the ones of filter 

IΘ . We consider the results of fi lter IIΘ  when 
80=τ . And estimated errors of signal 1z  and 2z  

can also be seen in following figures. 

Fig. 1: filtering error 1e  

Fig. 2: fi ltering error 2e  

These figures reflect the importance of 
delay-dependence. When we use the filter IIΘ , 
which is obtained under 8.0=τ , to solve the 
filtering problem with 80=τ , the filtering 
performance is worse than the one of IIΘ , which is 
obtained under 80=τ . Therefore the 
delay-independent is conservative, and 
delay-dependent filter would be superior to it.  
Using theorem 2 and theorem 3, we can also get 
reduced-order filter. For 8.0=τ , the 
one-dimensional filter IIIΘ we obtain is as follows 



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=
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K , 


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=
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0057.0
J ,

[ ]0886.01111.0 −=H , 3300.0−=G  

Substituting these fil ter parameters into (12) and (13), 
we find that the one-dimensional filter IIIΘ  has 
good robust property and it meets the ∞H  norm 
constraint. 
 

5. CONCLUSION 
 A method to design delay-dependent fil ter has been 
developed. The system we addressed is linear system 
with time vary parameter uncertainties. The method 
we proposed can avoid the conservative property of 
traditional time-independent method, and can cause 
high precision. A numerical example clearly 
demonstrated the effectiveness and the advantage of 
our approach. 
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