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Abstract: The work presents an innovative interpretation of Mamdani and Takagi-
Sugeno fuzzy models, that allows a better representation of systems’ dynamics. It
is shown, with illustrative examples, that, while Mamdani model is better for static
features, Takagi-Sugeno model is better for dynamic ones, although only around the
linearization points. Nevertheless, Mamdani model would be a perfect approximator
for dynamic systems if new conditions are taken into account. Copyright (c) 2002
IFAC.
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1. INTRODUCTION

Mamdani and Takagi-Sugeno (T-S) fuzzy models
have been used for more than two decades in
systems’ modeling. In control (analysis and de-
sign) theory, dynamic systems are the focus of
attention. In this work it is explained why, from
the authors point of view, non of these models are
suitable for perfectly modelling systems’ dynam-
ics.

Firstly, sections 2,3 and 4 establish the basis of
the problem. Then, in sections 5 and 6, both
models, with their advantages and drawbacks in
function approximation and system identification,
are shown, by using a simple but clear example.
Finally, in section 7, a better manner in which
fuzzy models can be applied is explained.

1 This work has been supported by Spanish Ministry

of Science and Technology through project URBANO
(DPI2001-3652-C02-01).

All the conclusions are applied to continuos and
discrete systems.

2. NOMENCLATURE AND ASSUMPTIONS

In the following sections, nth order non-linear
dynamic models of the form

xn+1 = f(x1, x2, . . . , xn) (1)

are used, where f can be a continuos or discrete
model. In the continuos case,

x1 = x(t), x2 =
dx

dt
, . . . , xn+1 =

dnx

dtn
(2)

while in the discrete case,

x1 = xk−n+1, . . . , xn = xk, xn+1 = xk+1 (3)

It is supposed that equilibrium holds at

x1 = x2 = . . . = xn+1 = 0 (4)
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At the equilibrium point, if x1 = x(t) 6= 0
or xn = xk 6= 0 (in the continuos or discrete
case, respectively), it is trivial to make a variable
change.

Some assumptions are made along the work:

• the t-norm to be used for the and operator is
t(a, b) = a · b

• the s-norm to be used for the or operator is
s(a, b) = max(a + b, 1)

• the operator for the implication is also
t(a, b) = a · b

• let there be X
(il)
l the fuzzy sets for input

xl, ∀il = {1, . . . , rl},∀l = {1, . . . , n} (being
rl the number of fuzzy sets for xl). Let be
also µ

X
(il)
l

(xl) the corresponding member-

ship functions and x
(il)
l their highest value.

Then
rl∑

il=1

µ
X

(il)
l

(xl) = 1 (5)

∀x
(il)
l ≤ xl ≤ x

(il+1)
l , with µ

X
(il)
l

(xl) = 1 and

µ
X

(il+1)
l

(xl) = 0.
• let

A
(i1...in)
n+1 =

∫
µ

X
(i1...in)
n+1

(xn+1)dxn+1 (6)

be the area of xn+1 membership functions.
Then,

A
(i1...in)
n+1 = A

(j1...jn)
n+1 (7)

∀i1, . . . , in,∀j1, . . . , jn.

3. LINEAR SYSTEMS APPROACH

The first step in a controller design is to obtain
a good model of the system under control. Two
cases exist:

• a differential or discrete equation is available
(the f function). In such a case, a fuzzy
model may be obtained by function approxi-
mation techniques

• a model function is not available. In this case,
identification techniques are necessary.

Approximation and identification issues are ad-
dressed in the further discussion about the two
fuzzy models kindness.

Approximation in classic control theory is done
just by linearizing f at a point (x(0)

1 , . . . , x
(0)
n+1):

xn+1 = f(x(0)
1 , . . . , x

(0)
n+1)

+
∂f

∂x1
(0)(x1 − x

(0)
1 ) + . . .

+
∂f

∂xn
(0)(xn − x(0)

n )

which leads to xn+1 = a
(0)
0 +a

(0)
1 x1 + . . .+a

(0)
n xn.

If the linearization is done at the equillibrium
point, then a

(0)
0 = 0. Model’s error increases as

we deviate from the linearization point.

Identification in classic control theory is done by
exciting the system around the equillibrium point
and compare its response with that of a linear one,
obtaining a model like in the previous case:

xn+1 = a
(0)
0 + a

(0)
1 x1 + . . . + a(0)

n xn (8)

4. FUZZY MODELS

4.1 Mamdani’s Model

The system is represented by rules like follows
(Kickert and Mamdani, 1978):

R(i1...in) : IF (x1isX
(i1)
1 )AND . . .

AND(xnisX(in)
n )

THEN(xn+1isX
(i1...in)
n+1 )

where Xi1...in
n+1 are fuzzy sets for xn+1,∀il =

{1, . . . , rl}∀l = {1, . . . , n}

The output of the system is computed as:

xn+1 =

∫
xn+1 · µXn+1(xn+1)dxn+1∫

µXn+1(xn+1)dxn+1
(9)

where

µXn
(xn+1) = s(t(w(i1...in), µ

(i1...in)
Xn+1

(xn+1)))(10)

∀il = {1, . . . , rl},∀l = {1, . . . , n} and

w(i1...in)(x1, . . . , xn) = t(µ(il)
Xl

(xl)) (11)

∀il = {1, . . . , rl},∀l = {1, . . . , n} is the weight
of the rule R(i1...in). By using the t and s-norms
described in section 2, it follows that

xn+1 =

=

∫
xn+1

∑r1
i1=1 . . .

∑rn

in=1 w(i1...in) · µ(i1...in)
Xn+1

(xn+1)dxn+1∫
dxn+1

=

∑r1
i1=1 . . .

∑rn

in=1 w(i1...in) ·A(i1...in)
n+1 · x(i1...in)

n+1∑r1
i1=1 . . .

∑rn

in=1 w(i1...in) ·A(i1...in)
n+1

(12)

where x
(i1...in)
n+1 is the centre of gravity of µ

(i1...in)
Xn+1

(xn+1).

Furthermore, it was proved in (Mat́ıa and Jiménez,
1996) that

r1∑
i1=1

. . .

rn∑
in=1

w(i1...in) = 1



provided that
rl∑

il=1

µ
X

(il)
l

(xl) = 1

∀l = {1, . . . , n}. So, finally,

xn+1 =
r1∑

i1=1

. . .

rn∑
in=1

w(i1...in) · x(i1...in)
n+1 (13)

The f function is just an interpolation between
the points x

(i1...in)
n+1 , centre of gravity of the out-

put’s membership functions. This means that
there could be used rules like

R(i1...in) : IF (x1isX
(i1)
1 )

AND . . . AND(xnisX(in)
n )

THENxn+1 = x
(i1...in)
n+1

and apply T-S centre of gravity calculation, as is
described in next subsection.

4.2 Takagi-Sugeno’s Model

The system is represented by rules as follows
(Sugeno, 1985; Takagi and Sugeno, 1985):

R(i1...in) : IF (x1isX
(i1)
1 )

AND . . . AND(xnisX(in)
n )

THENxn+1 = f (i1...in)(x1, . . . , xn)

being the most used f (i1...in) functions in control
applications linear expressions such as:

f (i1...in) = a
(i1...in)
0 + a

(i1...in)
1 x1

+ . . . + a(i1...in)
n xn (14)

Then, the system’s output is computed as

xn+1 =

∑r1
i1=1 . . .

∑rn

in=1 w(i1...in) · f (i1...in)∑r1
i1=1 . . .

∑rn

in=1 w(i1...in)

= 1 (15)

Attention must be paid to the fact that, under
section 2 suppositions, when

f (i1...in)(x1, . . . , xn) = ai1...in
0 (16)

this means, is constant, Mamdani and Sugeno’s
models are equivalent, since ai1...in

0 may be con-
sidered the centre of gravity of the output xn+1

membership functions.

5. FUZZY MODELS AS FUNCTION
APPROXIMATORS

Fuzzy models have been used in the literature
(Buckley and Hayashi, 1993; Wang, 1992) as func-
tion approximators. We will comment the be-
haviour of both models regarding this concept.

5.1 Mamdani’s Model

Theorem 1

The first order function x2 = f(x1) may be
exactly approximated by a Mamdani-like fuzzy
model in the range x

(i1)
1 ≤ x1 ≤ x

(i1+1)
1 , with

two rules:

R(i1) : IF (x1isX
(i1)
1 )THENx2 = f(x(i1)

1 )

R(i1+1) : IF (x1isX
(i1+1)
1 )THENx2 = f(x(i1+1)

1 )

provided that f is strictly monotonous (increasing
or decreasing) in that range. The fuzzy sets are
given by

µ
X

i1
1

(x1) =
f(xi1+1

1 )− f(x1)
f(xi1+1

1 )− f(xi1
1 )

(17)

µ
X

i1+1
1

(x1) =
f(x1)− f(xi1

1 )
f(xi1+1

1 )− f(xi1
1 )

= 1− µ
X

i1
1

(x1) (18)

µ functions do not belong to [0, 1] when f is not
monotonous.

Proof will be given in an extended version.

Example 1

The system x2 = sinx1 may be approximated by
a fuzzy model in 0 ≤ x1 ≤ π

2 as

R(1) : IF (x1isSMALL)THENx2 = 0

R(2) : IF (x1isBIG)THENx2 = 1

being

µSMALL(x1) = 1 − sinx1 (19)

µBIG(x1) = sinx1 (20)

so x2 = (1 − sinx1) · 0 + sinx1 · 1 = sinx1.

Theorem 2

The second order function x3 = f(x1, x2) = a +
bg1(x1) + cg2(x2) + dg(x1)g2(x2) may be exactly
approximated by a Mamdani-like fuzzy model in
the range x

(il)
l ≤ x1 ≤ x

(il+1)
l ,∀i = {1, 2}, with

four rules:



R(i1i2) : IF (x1isX
(i1)
1 )AND(x2isX

(i2)
2 )

THENx3 = f(x(i1)
1 , x

(i2)
2 )

R(i1i2+1) : IF (x1isX
(i1)
1 )AND(x2isX

(i2+1)
2 )

THENx3 = f(x(i1)
1 , x

(i2+1)
2 )

R(i1+1i2) : IF (x1isX
(i1+1)
1 )AND(x2isX

(i2)
2 )

THENx3 = f(x(i1+1)
1 , x

(i2)
2 )

R(i1+1i2+1) : IF (x1isX
(i1+1)
1 )AND(x2isX

(i2+1)
2 )

THENx3 = f(x(i1+1)
1 , x

(i2+1)
2 )

provided that gl are strictly monotonous (increas-
ing or decreasing) in that range. The fuzzy sets
are given by

µ
X

il
l

(xl) =
gl(xil+1

l )− gl(xl)
gl(xil+1

l )− gl(xil

l )
(21)

µ
X

il+1
l

(xl) =
gl(xl)− gl(xil

l )
gl(xil+1

l )− gl(xil

l )
= 1− µ

X
il
l

(xl) (22)

µl functions do not belong to [0, 1] when gl is not
monotonous.

Proof will be given in an extended version.

5.2 Takagi-Sugeno’s Model

T-S- model can not be properly used as function
approximator as is shown in the next example.

Example 2

For x2 = sinx1, T-S model ∀0 ≤ x1 ≤ π
2 follows

R(1) : IF (x1isSMALL)

THENx2 = x
(1)
2 + cosx

(1)
1 · (x1 − x

(1)
1 ) = x1

R(2) : IF (x1isBIG)

THENx2 = x
(2)
2 + cosx

(2)
1 · (x1 − x

(2)
1 ) = 1

Any kind of interpolation (this means, member-
ship function shape) in 0 ≤ x1 ≤ π

2 will produce
a function which is completely different from the
original function.

5.3 Comparison

It seems that Mamdani’s model is better than
T-S one for function approximation, although
T-S model represents better system’s dynamics
around the linearization points (rules).

6. FUZZY MODELS FOR SYSTEM
INDENTIFICATION

6.1 Mamdani’s Model

Lets have a system to be identified at some points
(x(i1)

1 , . . . , x
(in)
n ). A Mamdani’s fuzzy model may

be built if we obtain information about xn+1 at
those points (lets say x

(i1...in)
n+1 ). In such a case, the

model will be:

R(i1...in) : IF (x1isX
(i1)
1 )

AND . . . AND(xnisX(in)
n )

THENxn+1 = f(x(i1)
1 , . . . , x(in)

n ) = x
(i1...in)
n+1

Inference on Mamdani’s model will provide an
interpolation method for the system.

Example 3

x2 = sinx1 can be identified at x1 = 0 and
x1 = π

2 , as x2 = 0 and x2 = 1, respectively. Then,

R(1) : IF (x1isSMALL)THENx2 = 0

R(2) : IF (x1isBIG)THENx2 = 1

If we choose triangular membership funtions in
0 ≤ x1 ≤ π

2 , this means

µSMALL(x1) = 1 − 2x1

π
(23)

µBIG(x1) =
2x1

π
(24)

then

x2 = (1 − 2x1

π
) · 0 +

2x1

π
· 1 =

2x1

π
(25)

where it is clear that x2 6= sinx1.

6.2 Takagi-Sugeno’s Model

Now the goal is to identify a system at some
points (x(i1)

1 , . . . , x
(in)
n ),∀il = {1, . . . , rl},∀l =

{1, . . . , n}, but using linear subsystems. With T-S
model, rules like follows are obtained:



R(i1...in) : IF (x1isX
(i1)
1 )

AND . . . AND(xnisX(in)
n )

THENxn+1 = a
(i1...in)
0 + a

(i1...in)
1 x1

+ . . . + a
(i1...in)
1 xn

Between the linear subsystems, T-S model also
provides an interpolation method for the dynam-
ics of the system.

Example 4

x2 = sinx1 may be identified at x1 = 0 and
x1 = π

2 as x2 = x1 and x2 = 1, respectively, as
was seen in example of subsection 5.2. Then,

R(1) : IF (x1isSMALL)THENx2 = x1

R(2) : IF (x1isBIG)THENx2 = 1

If we choose again triangular membership func-
tions,

µSMALL(x1) = 1 − 2x1

π
(26)

µBIG(x1) =
2x1

π
(27)

then x2 = (1− 2x1
π ) ·x1+ 2x1

π ·1 = (1+ 2
π )x1+ 2

π x2
1.

The static approximation is not fine. Note that

f ′(x1) = (1 +
2
π

) +
4
π

x1 (28)

so the derivatives at 0 and π
2 do not correspond

with those of the original system.

6.3 Comparison

Mamdani’s model does not take into account
system dynamics, but T-S model does not provide
a good static approximation.

7. FUZZY MODELS DISCUSSION AND
CONCLUSION

7.1 A new approach

Although T-S model has been widely used in
fuzzy modeling for control applications, because
it includes valuable information about the system
dynamics, we will prove that Mamdani’s model
can achieve a better approximation, without loos-
ing its static approximation capabilities.

The way to do that is just to increase membership
functions information, using linear subsystems in
the identification process as in T-S case.

Theorem 3

Lets suppose the case of identifying a first order
function x2 = f(x1) in x

(i1)
1 ≤ x1 ≤ x

(i1+1)
1 , with

Mamdani’s model, and using two rules:

R(i1) : IF (x1isX
(i1)
1 )THENx2 = f(x(i1)

1 )

R(i1+1) : IF (x1isX
(i1+1)
1 )THENx2 = f(x(i1+1)

1 )

provided that f is strictly monotonous in that
range. Lets suppose that we have information (ob-
tained from the identification process), not only
about f(x1), but also about its derivative f ′(x1)
at x

(i1)
1 and x

(i1+1)
1 . Then, a couple of fuzzy sets

which guarrantees that the model approximates
both statics and dynamics in the previous range,
is given by:

µ
X

(i1+1)
1

(x1) = q0 + q1x1 + q2x
2
1 + q3x

3
1 (29)

µ
X

(i1)
1

(x1) = 1 − µ
X

(i1+1)
1

(x1) (30)

being


q0

q1

q2

q3

 = X−1
1



0
1

f ′(x(i1)
1 )

f(x(i1+1)
1 )− f(x(i1)

1 )
f ′(x(i1+1)

1 )

f(x(i1+1)
1 )− f(x(i1)

1 )


(31)

with

X1 =


1 x

(i1)
1 x

(i1)
1

2
x

(i1)
1

3

1 x
(i1+1)
1 x

(i1+1)
1

2
x

(i1+1)
1

3

0 1 2x
(i1)
1 3x

(i1)
1

2

0 1 2x
(i1+1)
1 3x

(i1+1)
1

2

 (32)

Proof

x2 =
[
1− µ

X
(i1+1)
1

(x1)
]
f(x(i1)

1 ) +

+ µ
X

(i1+1)
1

(x1)f(x(i1+1)
1 ) =

= f(x(i1)
1 ) +

[
f(x(i1+1)

1 )− f(x(i1)
1 )

]
µ

X
(i1+1)
1

(x1)

= f(x1) (33)

This gives us four conditions:

µ
X

(i1+1)
1

(x(i1)
1 ) = 0

µ
X

(i1+1)
1

(x(i1+1)
1 ) = 1

µ′
X

(i1+1)
1

(x(i1)
1 ) =

f ′(x(i1)
1 )

f(x(i1+1)
1 )− f(x(i1)

1 )



µ′
X

(i1+1)
1

(x(i1+1)
1 ) =

f ′(x(i1+1)
1 )

f(x(i1+1)
1 )− f(x(i1)

1 )
(34)

Choosing, for instance, µ
X

(i1+1)
1

(x1) = q0 +q1x1 +

q2x
2
1 + q3x

3
1, the four conditions are expressed by

the above matrix equallity.

Example 5

Lets try to identify x2 = sinx1, at x1 = 0 and
x1 = π

2 . We have that f(0) = 0, f(π
2 ) = 1,

f ′(0) = 1 and f ′(π
2 ) = 0. So,

X1 =


1 0 0 0

1
π

2

(π

2

)2 (π

2

)3

0 1 0 0

0 1 π
3π2

4

 (35)


q0

q1

q2

q3

 = X−1
1


0
1
1
0

 =


0
1

0.0574
0.1107

 (36)

µSMALL(x1) = x1 − 0.0574x2
1 − 0.1107x3

1(37)

µBIG(x1) = 1 − x1 + 0.0574x2
1 + 0.1107x3

1(38)

with

R(1) : IF (x1isSMALL)THENx2 = 0

R(2) : IF (x1isBIG)THENx2 = 1

Note that now dynamics are exactly included in
the model since x2 = f(x1) = 1−x1 +0.0574x2

1 +
0.1107x3

1 and so f ′(0) = 1 and f ′(π
2 ) = 0, as

happens with x2 = sinx1.

Theorem 4

Lets suppose the case of identifying a second order
function x3 = f(x1, x2) in x

(il)
l ≤ xl ≤ x

(il+1)
l ,

∀l = {1, 2}, with Mamdani’s model. Let’s suppose
that f can be decomposed in the form f(x1, x2) =
a+bg1(x1)+cg2(x2)+dg1(x1)g2(x2). Then, it can
be easily proved that the fuzzy sets that must be
used are given by:

µ
X

(il+1)
l

(xl) = q0l + q1lxl + q2lx
2
l + q3lx

3
l (39)

µ
X

(il)
l

(xl) = 1 − µ
X

(il+1)
l

(xl) (40)

with


q0l

q1l

q2l

q3l

 = X−1
l



0
1

g′l(x
(il)
l )

gl(x
(il+1)
l )− gl(x

(il)
l )

g′l(x
(il+1)
l )

gl(x
(il+1)
l )− gl(x

(il)
l )


(41)

with

Xl =


1 x

(il)
l x

(il)
l

2
x

(il)
l

3

1 x
(il+1)
l x

(il+1)
l

2
x

(il+1)
l

3

0 1 2x
(il)
l 3x

(il)
l

2

0 1 2x
(il+1)
l 3x

(il+1)
l

2

 (42)

Proof will be given in an extended version.

7.2 Conclusion

The new model presented above allows a bet-
ter identification of dynamic systems than T-S
and Mamdani’s models with conventional mem-
bership functions. In the simple example that
has been shown, x2 = f(x1) = sinx1, when we
have information about its identification at some
points, Mamdani’s model with extended member-
ship functions shows better results (x2 = 1−x1 +
0.0574x2

1 + 0.1107x3
1) than traditional Mamdani’s

model (x2 = x1) and T-S model (x2 = (1+ 2
π )x1−

2
π x2

1).

Extension of the example shown along the work,
can be easily extended to nth order systems as
well as to cases with rl identification points, this
means, with more than two membership functions
per input variable.
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