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CHECKING REDUNDANCIES IN SUPERVISORY CONTROL.
A COMPLEXITY RESULT. 1
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Abstract: The iterative nature of state feedback control appoaches based on the addition of
control places (in Petri net models), can give rise to redundancies in the added control. These
redundancies are characterised as implicit places. In this paper we prove that deciding the
implicitness of a place added to a live marked graph is of polynomial complexity.
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1. INTRODUCTION cases (Banaszak and Krogh, 1990), deadlock states are
specified by other particular substructures. The com-

Petri net models have been extensively used in the syn-mon factor to all these approaches (even no related
thesis of controllers for discrete event systems arising to the deadlock avoindance control policy) is that the
from the application domain of flexible manufacturing specification of the forbidden states can be expressed
systems. The specification of the controller, in the case by means of linear inequalities, which set of integer
of the state feedback contr@pproach (Hollowayet solutions are the states to forbid in the behaviour of
al., 1997), can be given as a set of forbidden states.the net system. The controller to be sinthesized from
The goal of the control is that of constraining the each linear inequality is a place that can be obtained as
system behaviour so that a set of forbidden statesa linear combination of a set of places derived from the
cannot be reached. The corresponding control policy places whose marking variables appear in the inequal-
is calledstate feedbackAn important class of these ity, i.e. they arestructurally implicit placesTherefore,
state specifications is related to the liveness enforcingthe non-negativity of the marking of the control place
of a system or the avoidance of (total or partial) dead- cuts all forbidden states, or, in other words, the region
lock states. The controller specification for deadlock composed by the markings satisfying the specification
avoidance is the set of deadlock states. of the forbidden states is characterised by a negative
marking of the control place. This approach has been
generalised in (Park and Reveliotis, 2000) defining the
algebraic livenes enforcing supervisors

One of the fundamental problems in the computation
of the control is the characterization of the dead-
lock states, because the synthesis of the controller
is strongly dependent on it. For example, some ap- This approach has been shown as a fruitful way to
proaches (Ezpeletat al, 1995; Xie and Jeng, 1999) obtain the controllers, but in general it requires an
consider a specification of deadlock states based oniterative method, because new deadlock states can
the emptyness of the siphons of the net system. Thatis,appear in the system.
nem iphon represen i ili . :
?etewi'f)rzr?epp?op:rgyiii\tt:\l?pzleggg %‘:gi;?ﬁ;?g%gyme iterative nature of the method means also that
siphon are empty. This means that the output transi- after an iteration we can add a set of control places
tions of an empty siphon are dead forever. In other that can become redgndant V.V'th rgspect o the set of
' control places added in other iterations. Therefore, the
detection of these redundancies is interesting in order
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concep that captues the idea of redundant contol
placeis theconcep of implicit place.

In this papemwe investigatethecompleity of testingif
aplaceis implicit. This testrequires the computation
of the minimum initial marking makirg implicit a
structurdimplicit place.After this computation,if the
initial marking of the contrd placeis greaterthanor
equalto the computed marking making it implicit,
then the contrd place is reduindant and it can be
removedto obtaina simplercontwoller.

The paperis organisedasfollows. In sections2 and
3 the basicdefinitionson implicit placesare given
The Minimum Initial Marking Problem (MIMP) is
presentedn Section4, aswell asits compleity for
the caseof freechoicenetsystemsSection5 presents
new resultsconcening the comgexity of the MIMP
for marked graghs and proving that in this casethe
compexity is polynomial. Becauseof the lack of
space no basicdefinitions and notationsaboutPetri
netsaregiven The usednotationcanbe foundin the
relatedpape (GarciavallésandColom,1999.

2. IMPLICIT PLACES

An implicit placeis a placewhoseremoval doesnot
chang the behaiour of the netsystem.Two notions
of behaiour equivalerce are usedto defineimplicit
places.The first one consides that two net systems
have the samebehaiour if they presenthe sameoc-
currercesequencesf transitionsThatis, theseplaces
canbe removed without charging the sequentiaob-
servationof the behaiour of the netsystem.Implicit
placesunder this equivalerce notion are called se-
quertial implicit places(SIP). The secondnotion of
equivalenceimposesthat the two net systemsmust
have the sameoccurencesequenceof steps.In this
case,implicit placesare called concurent implicit
places(CIP) andits removal doesnot chang the pos-
sibilities of simultan@usoccurencesf transitionsn
theorigind netsystem.

Definition1. (Colom 1989 Let . = (.4",m) bea
net systemand .#’ = (4", m/) the net system.”
with an additioral place p. p is a Seqential [Con-
current] Implicit Place(SIP)[CIP] iff L(.#) = L(.#")
[LS(#) = LS(#")], i.e., the additinn of p preseres
all occurencesequenesfof stepslof ..

Note thatif p is a SIP (CIP), RS(¥) = RY(%'|p),
becausehe occurencesequencgare presered, and
therefae,if misreachakein . bytheoccurencese-
querce g, amarkng m’ suchthatm’[g] = m[q], Vq #
p, andm’[p] = my/[p] + C'[p, T]- o will bereachale
in .

In the rest of the paper wheneer appr@iated, we
will use primed variebles to dende objectsof .’

(thenetsystemwith theaddedplace),andnonprimed
variabesfor objectsof . (the“original” netsystem).

The relation betweensequentialand concurent im-
plicit placeds shavn in thefollowing result.

Corollary 2. (Garcia-\dlésandColom,1999 1) If p
isaCIP, thenpisaSIR 2) If pis self-log free,then
pisaCIPif andonlyif pisaSIP

The removal of tokers from an implicit place can
male it non-inplicit. Thefollowing resultguaantees
that an implicit place remainsimplicit if its initial

markirg is increased.Therebre, given an implicit

place,thereexistsa minimuminitial marking for this

placethatmakesit implicit.

Theoem3. (GarciaVallésandColom,1999 Let. =
(A,my) be anetsystemand p a SIP (CIP) in ..
Theplacep is a SIP (CIP) in all netsystems?* =
(A,mgt), suchthatmy*[p] > m,[p] andm,*[q] =
my[q] for all g # p. In otherwords, the SIP (CIP) p
remainsmplicit if its initial marking is increased.

Finally, we definethe implicitnessproperty in terms
of reachale markirgsinsteadof sequenes.It means
thata SIP (CIP)is never theonly placethatavoidsthe
occurenceof (stepsconcerimg) its outpt transitions.
This chamcterisatioris very usefu becaseit canbe
manipuatedusingalgebaic technigies.

Proposition4. (GarciavallésandColom,1999 1) p
isaSIPof . if andonlyif for allm’ € R§(A4”,m,),
andfor all t € p®, if m'|, > Pre[Pt], thenm/[p] >
Pre[p,t]. 2) pis a CIP of ./ if andonly if for all
m' € R§(#”,my'), andfor all Spe € Z‘f", if m'|p >
PrefP, p*] - ., thenm'[p] > Pré/[p, p*] - s

3. STRUCTURALLY IMPLICIT PLACES

The implicitnessof a placedeperls, in geneal, on

the initial marking of the net system.If the initial

markirg of the netwithouttheplacecharges,in some
casess alwayspossiblemake the placeimplicit again
by changng its initial markirg acordirgly. Places
thatfulfil this property arecalledstructuially implicit

places Theword“structurally’ highlightsthefactthat
this propety depend exclusively onthenetstructue.

For structurallyimplicit places,their implicitnessis
determiredby its initial markng only.

Definition5. (Colom 1989 A placep is asequetial

structually implicit place (SSP) (corcurrent struc-
turally implicit place (CSIP) of .#" if and only if

for eachnetsystem(.#",m), thereexistsa € IN such
that p is a SIP (CIP) in (A", m'), with m,'[q] =
mo[a] Vg # p, andm'[p] = a



Accordng to the definition a structurally implicit

placecanbecone implicit for ary initial marking of

therestof placesjf we have thefreedan to selectan

adequate initial markirg for it. However it shouldbe

notedthat implicitnessproperty does not implies its

structurd countepart. That is, there can be implicit

placeghatarenotstructurallyimplicit. Justlikein the
caseof implicit placessomerelationsbetweerSSIPs
andCSIPscanbeestablished.

Theoem6. (GarciaVallésandColom,1999 1) If p
is aself-loopfreeplace thenpis a CSIPif andonly if
pisaSSIR2) pis aCSIPif andonlyif pis SSIPand

3y, k suchthat: (1)
y'-C<k-C'[p,T]
y'-Pre> Pré[p,T]
k<1
y>0

SSIPscan be efficiently characteésed accordimg to
the following results.Obviously, the given structural
condtions canbechecledin polynomialtime.

Theoem?7. (Colom 1989 A placepis a SSIPif and
only if thereexistsy > 0, suchthaty " - C < C'[p, T].

Corollary 8. Let .4 be a structually boundednet. p
is a SSIPof 4" if andonly if thereexistsy suchthat
y'-C<C'[p,T].

Thealgebaic charactazationmakespossibleo prove
thatthe equivalencebetweerSSIPsandCSIPscanbe
extenced to placeswith self loops,if the netwithout
theplaceis structually bounded,asthenext corollary
proves. Becausdive marked graghs are structually
bourded,only SSIPshave to be consideed.

Corollary 9. Let 4 beastruturdly boundednet.pis
aCSIPof 4" if andonlyif pisaSSIPof 4.

Structual implicitnessis not, in geneal, a necessary
condtion for implicitness.However, asthe following
resultestablishedt turnsto benecessarywhenthenet
withoutthe placehassomeadditioral properties.

Theoem10. (Garcia-\dlés andColom, 1999 Let p
beaSIPof .’ If .7 is structurallybourdedandeach
minimal t-semiflav of . canoccu in isolationfrom
somereachale marking, thenp is alsoa SSIP

4. THE MINIMUM INITIAL MARKING
PROBLEM (MIMP)

Thereexist several well-known subclassesf netsys-
tems asfor examge live andsafefreechoicenets,and
of courselive markedgrapts, fulfilling the condtions
of Theaem10, andtherefoe SSIPnesss a necessary

condtion for SIPnesdor them.Moreover, SIPnesss

alsoa necessargondtion for CIPnesgCorollary 2).

Taking into account the definition of structurallyim-

plicit place,in suchcasesheimplicitnessprodemcan
bedecompsedn two subpoblems:1) Determiningf

theplaceis aSSIP;2) Determinigif theinitial marking

of theplaceunderstudyis enoghto make it implicit.

Subpoblem 1 is easily decidedin polynomial time
becauset only requres to find a solutionof a LPP
(Theaem7 or Corollary 8). Subppblem?2 is hardey
andit will be drived in the rest of the pape. Note
alsothatbecauseheincreasingf theinitial markirg

of an implicit place doesnot affect its implicitness
(Theaem 3), subppoblem 2 can be enurtiatedas a
minimum initial markingproblem (making the place
implicit). This prodemis formally statedasfollows:

Minimum Initial Marking (of a SSIP)

Given: A netsystem¢”’, aSSIPp of ./, andaninitial
markirg m[p] suchthatpis aSIPin .’

To decide is m'[p] theminimuminitial markirg that
makesp aSIP (or CIP)in .#?

In a previous work (Garcia-\dlés andColom, 1999

this prodemwasprovedNP-Completéfor SIPs)even
whenthe netsystemwithout p is a live andsafefree-
choice net system,a very simple and well-betaved
subclassin the following section,and for the case
of a structually implicit placeaddedo alive marled
gragh, we charaterisethe MIMP by meansof alinear
progammirg problem, and thus the implicitness of

theplacecanbedecidedn polynomialtime.

5. THE MIMP IN LIVE MARKED GRAPHS

In this sectionthe subclaswof live marked grapts is
addessedRecallthatthe placeuncer studyis addel
to live marked graph . = (.#",m,), and possibly
the net with the addedplace, ' = (A", m’), is
not a marked graphary longer. Both sequentiaknd
concurent versins of implicitnessare studied. As
it was noted in Section4, SSIPnesds a necessary
condtion for both kinds of SIPnessand then only
theMIMP remainsopen Making useof theimporitant
property that the net stateequationof a live marked
gragh hasnot spuriots solutiors, andwith the help of
totally unimadular matricestheory polynamial-time
characteazationsfor bothimplicithesspropertieswill
beobtainel.

Notice that deternining livenessfor marked graghs
is of polynamial comgexity: A marked graphis live
if andonly if it is conserative, corsistent,and all
circuitscontainat leastonetoken

5.1 Totally Unimodilar Matrices
An integer progammirg problem defined over the

constraimn setS= {x € Z};A-x < b} canbe some-
timessolvedasa linear progammingproblem (mak



ing x € IRY) if the matrix A hascertainproperties.
Totally Unimoduar Matrices(TU) area kind of ma-
trices fulfilling the neead properties. As it will be
exposedin thefollowing subsectiog, andfor thecase
of livemarkedgraghs,the matriceghatdefinethesets
of corstraintsassociatedvith the MIMP are totally
unimadular. This factwill allow to relaxthe doman

of thevariabdesfrom intege to real. All theresultsin

this subsectiomave beentakenfrom (Nemhaserand
Wolsey, 1983).

Definition11. An mx n integral matrix A is totally
unimodilar (TU) if the determimant of eachsquare
submatix of A isequalto 0, 1,0r —1.

The usefulress of TU matricesis that an IPP can
be solved as a LPP if the matrix that definesthe
constraitsis TU, asthefollowing propaitionsstate.

Proposition12. If Ais TU, thenP(b) = {x € IR : A-
x < b} is integral for all b € Z™ for which it is not
empty

Proposition13. Considethelinearprogammirg prob-
lemLP overthepolyhedronP givenby z, , = max{c' -
X : X € P}. Then,thefollowing statementsreequi-
alent:1) P is integral. 2) LP hasan integral optimal
solution for all ¢ € IR" for which it hasan optimal
solution.

The following characteration of TU will be very
fruitful in the proofs of the main results for live
markedgraghs.

Theoem14. A is TU if andonly if for every J C

{1,...,n}, thereexistsa partition J;, J, of J suchthat,
fori=1,...,m:

<1

J_EZlA[i, i1- J_EZZA[i, i]

5.2 Sequetial Implicit Places

In order to apply the theoy of TU matricesto the
minimum initial markng problem, anIPP character
zation of SIPnesds neededTaking as startingpoint
the charactdration given in Propsition 4, the first
stepis to substitutesucha set by the markng so-
lutions of the net stateequation. This substitutionis
possible basically becase the net stateequaion of
live marked graphs have not solutiors that are not
reachale (Murata,1977).

Lemmal5. p is a SIP of ./ if andonly if for all
t € p*, andfor all o € Z/T|, suchthatm,+C -0 >
Pre[Pt], my'[p] > —C'[p, T]- 0 + Pré/[p,t].

Prodf: = Because is a SIP, RS(.¥) = RS(.Y'|p).
RS.”) canbecharacterzedby themarking solutions
of the netstateequation because? is alive marked
graph (Murata 1977, thatis RS(.) = {m | m =
me+C-0, m>0, o € ZIT'}. Ontheotherhand an
becausep is a SIP, L(#) = L(.’) and if my—Zsm,
thenm'[p]-Z;m[p]. Therebre RS(.’) canbe char
acterizedhsRS(.#") = {m, m'[p] [ m=m,+C-0 >
0, m'[p] = mq[p]+C[p, T]-0, 0 € ZT'}. Takinginto
accounthisfact,theright-handsideof Popositior.1
canbedirectly rewritten asstatedn thislemma.

<= Thecondtion canberewritten as:for all t € p°®,
andfor all o € ZIT!, suchthatm =my+C-0 >
Pre[Pt] (> 0) andm’[p] = my'[p] + C'[p, T]- 0, then
m'[p] > Pré[p,t]. If this condtion is met, then it
is alsotrue for the particularcasewhenm’[p] > 0.
But in thatcasem, m’[p] arethe solutionsof the net
stateequation of .. This setincludes RS(.#’), and
therefae the conditionis also true for RS(.'). By
Propaition4.1, pisaSIR O

Theresultof Lemmal5 asa family of IPPs(onefor
eachoutput transitionof p) canberewriten, searchig
for theinitial markingof p thatfulfils the inequality
for every reachake markirg.

Lemmal6. Letthefamily of IPPs2, definedfor every
te p*:

Z' = max. —C'[p,T]-O+Pré[p,t] (2
st. my+C-0 > PreRt]
oez

pisaSIPof . if andonlyif for allt € p®, its corre-
spondng IPP2is bourded,andm'[p] > max{Z' |t €

p*}.

Prodf: Theresultis easilydeducedrom Lemmals,
takingto accoun thateachlPP 2 computesaninitial

marking that fulfils the conditicn of Lemma15 in

ary case.NotethateachlPP 2 alwayshasa feasible
solution, becausen live net systemsand given ary

transition thereexistsatleastareactablemarkirg that
enablest, thatis, thereexistsm € RS(.¥) suchthat
m > Pre[R,t], for ary transitiont. O

Finally themainresult,thecharacterizion of SIPness
in termsof a setof linear progammingprablems,is
obtainel takeninto accoun thatthe inciderce matrix
of a marked graphis totally unimadular Moreover,
thebowndedressof thesolutionsof IPPsin Lemmal6
will be provedasequivalentto the condition of SSIP-
ness.

Theoem17. Let the family of IPPs 3, definedfor
everyt € p*:

Z = min.y' - (my—Pre[Pt]) + Pre[p,t] (3)
st. y'-C<C'[p,T]
y>0



pis a SIP of .’ if and only if p is a SSIP and
my'[p] > max{Z [t € p*}.

Prodf: Thefamily of IPPs2 canberewrittenin stan-
dard form as: z* = maq{—C'[p,T]-0 : 0 € R} +

Prée[p,t], beingk, = {o € Z'I‘ :C-0< —PrePt]+

m,}. Cis TU becaseit is the nodeincidene matrix
of abipartitegraph (theinciderce matrix of amarled
graph); additiorally, the polyhedraP/ = {o € IRl :

C-o0 < —Pre[Pt] + m,} are not empty becausehe
netsystemis live (seetheprod of Lemmal6). These
two conditiors imply that for all t € p®, P is inte-
gral (Propaition 12). Therdore, for all t € p*, Zz =

max{—C'[p,T]- 0 : 0 € R’} hasanintegral optimal
solution (Proposition 13), and z, = z. Applying the
Alternatives Theaem (NemhaserandWolsey, 1988

to eachz, we obtainthe family of LPPs3. Because]

hasalwaysafeasiblesolution,its correspondig LPP3

is eitherbourded(if Z is bourded)or non-feasible(if

Z is unbainde).

Therebre we can establishthat Vt € p*®, its corre-
spondng IPP2 is bourded,andm'[p] > max{Z |t €
p*} if andonly if Vvt € p®, its correspondig LPP 3
hasafeasiblesolution andm/[p] > max{Z? |t € p*}.
Finally, notethatthe existenceof solutiors of LPPs3
is equivdentto theSSIPnessf p (Theoem7). O

5.3 Concurentimplicit Places

In the caseof CIPstheproedureto obtainthedesired
resultis similar to that followed for SIPs.However,
in this case total unimadularity of the matrix corre-
sponding to the MIMP mustbeexplicitly proved.

Lemmal8. pisaClPof &' if andonlyif forall o €
Z'I', andfor all Sp € Z'f l, suchthatmy+C-0 >
Pre[P, p°] - s, my'[p] > —C'[p, T] - 0 + Pré/[p, p*] -

Sp. .

Prodf: Theprod followsthesamestepghattheprod
of Lemma 15, reasoningvith ocurencesequenesof
stepsinsteadof transitiors. O

Justlike for SIPnessthe condtion for CIPnessin
Lemmal8is only sufiicient for netsystemsn geneal,
becaus®f the existen@ of spuriots solutions.

Lemmal9. pis a CIP of .’ if andonly if IPP 4 is
bourded,andm/[p] > z

z= max. —C'[p,T]- O +Pré[p,p*]-S,. (4)
st. my+C-0 > PrefP,p*]- S,
oez
S, €Z"!

Prodf: The result is easily dediced from Lemma
18, taking to accountthat IPP 4 computesan initial

markirg thatfulfils the condition of Lemmal8in ary
case.Note that IPP 4 always hasa feasiblesolution
becausen live net systems there exists at leasta
reachake marking thatenablesary transition,thatis,
thereexists m € RS(.¥) suchthatm > Pre[R,t], for
ary transitiont. O

The most dificult partin this subsections to prove

thatthe matrix thatdefinesthe polyhedra of IPP 4 is

TU. Previously, let usrewrite IPP 4 in standardorm:

zp=maxc -x:xeP}, P={xezHPFl:A.
P . ’ + .

x <my}, where:

A=[-C PrelP,p*]]

o= rrappl

it

Lemma20. Thematrix A is totally unimodular

Prodf: Let us assume,without loss of gererality,

that columsin A areorderedin the following way:

A =[-C[P,p] | ~C[RT\p'] | Pre[p,p*]). More-

over, the order taken in the columrs of C[P,T \ p*]

is maintainedn the colurms of Pre[P, p*]. Thatis, if

thecolumm with index j of C[P, p*] correspadsto the

transitiont, thenthe colurm with index j + |T| of A

(the columnwith index j in Pre[P, p*]) corresponds
alsoto transitiont.

Theresultis provedwith thehelpof Theaem14. Let
JC{1,...,|T|+|p*|}, thatis, J is asubsebf indexes
thatidentify a subseof colummsof A. LetJ;, J, bea
partitionof J definel in thefollowing way: Let j € J;
i) If je{l,...,|T|}, thenj € Jy; i) In the caseof
JE{ITI+1,...,[T[+[p*|} letj' = | — [T|;if | €,
thenj € J, elsej € J;. Leti € {1,...,|P|} betheindex
of arow of A, anda; = |3 ;o5 All, il = 3 ey Al ]
The goal is to prove thata; < 1, Vi € {1,...,|P|}.
BecauseC is the inciderce matrix of a live marked
graph, thereexistsonly two elementsotequalto zero
in —Cli, T], one of themwith value 1 andthe other
—1.Let j; andj, betheindexesof the columrs of A
correspondimy to suchelementsrespectiely. Because
Pre[P, p*] correspondsalso to a live marked graph
thereis at most one elementnot equéa to zeroin
Preli, p*] (whosevaluewill be 1). If suchanelement
doesnot exist, thena; < 1, becaussf j,, j, or both
belorg to J, thenthey belorg to J;, beingAli, j,| =1
and Ali, j,] = —1. On the cortrary, if there exists
an elementnot equalto zeroin Prefi, p*], let j; be
the index of the coluim of suchan element.Then
j3 =i, +|T|, becase C and Pre[P, p*] correspas
to the samenet, and the sign of C is changd in
A. Three casesare distingushed:i) If j; ¢ J, then
a < 1, dueto the samereasos than befoe; ii) If
jz€Jandj, € Jthenj; € J,. In thiscase|f |, € J,
8 = |All,iy] +Alfi, i) —All jg)| = [1- 1~ 1] < L.1f



jo & . a = |Ali, jy] = Ali, ]| = [1- 1] < 1.ii) If
jg€Jandj, ¢Jthenj; € J;. Inthiscasejf j, € J,
& = [Alljp] + All,jall = |~ 1+ 1 < 1.0 j, &3,
g =|Alljg]| =1 <1. D

Total unimodularity of A allows to prove the main
resultconerningCIPs,analogaisto thepresetedfor
SIPs.

Theoem?21. pis a CIP of ./ if andonly if pis a
SSIPandm,'[p] > z

z=min.y'-m, (5)
st. yT-C<C'[p,T]
y" -Pre[P,p*] > Pre/[p, p°]
y>0

Prodf: BecauseéA is TU, the prod follows the same
stepsthan in Theoren 17, except for the last one,
the equivalence betweenSSIPnes&ndthe existence
of a solution of LPP 5. Let us prove this last point.

Obviously, theexistenceof asolutionof LPP5implies
that p is a SSIP(Theoem 7). On the otherhand if

p is a SSIP thereexists y > 0 suchthaty’ - C <

C'[p,T] (Theorem?7). If yT - PrefP, p*] > Pré[p, p*],

theny is a solution of LPP 5. On the contray, let

k = max{Pre/[p,q] —y" - PrelP.q] | g € p*} (k> 0).
Becausdive marled grapts arestructually bourded,
thereexistsx > 1 suchthatx” -C < 0. Let y,=Yy+Kk-

x. Theny,"-C < C'[p,T] (becasey” -C < C'[p,T]

andk-x"-C < 0) andy,' - Pre[P, p°*] > Pré[p, p*l;

thatis, y, is asolutionof LPP5. O

Finally, recallthatCorollary2 shovedtheequvalence
betweenSIPsand CIPsfor the caseof self-log free
places.This factmakesthat Theorem21 canbe con-

sideredasaalternatve chaacterizatiorof SIPnesgor

self-loopfreeplaces.

6. CONCLUSIONS

In the statefeedbak contrd approachby the addition
of contol places,implicitness charaterisesredun
danciesin the contrd. In this paper we have proved
that for the caseof live marked graghs, checkirg if
a contrd placeis implicit is of polynomial comgex-
ity. This resultcompgementsa previous work on live
and safe free-cloice net systems(Garciavallés and
Colom,199).
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