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Abstrad: The development and applicaion of a wmnstrained Single Input Single Output
(SISO) version of the popular Generalised Predictive Control (GPC) agorithm, which
uses the Quadratic programming (QP) approach, is presented in this paper; Mean Arterial
presaure (MAP) is used as an inferential variable to indicate the level of unconsciousness
First, the dgorithm was validated using a derived re-circulatory physiologicd model of
anaesthesia via a semi-closed circuit before the dosed-loop control system was
transferred to the operating theare for validation during surgicd operations. Simulation
and red-time experiments $owed that excdlent regulation of blood pesare aound set-
point targets can be adieved. Such regulation was later trandated to being equivalent to a
good maintenance of level of anaesthesia. Copyright © 20021FAC
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1. INTRODUCTION

Anaesthesia is generaly described as that part of the
medicd professon which ensures that the patient’s
body remains insensitive to pain an other stimuli
during surgicd operations. It includes muscle
relaxation  (paralysis), unconsciousness and
analgesia (pain relief). In contrast to muscle
relaxation, depth of anaesthesia is more difficult to
quantify acarately. It isin fad agreed that there is
no absolute standard for the definition of clinicd
state of anaesthesia ajainst which new methods
designed to measure ‘depth’ of anaesthesia can be
proposed (Robbet al, 1988. Thus, one gproach has
been to merge anumber of clinicd signs and on-line
monitored data to produce an expert system adviser
for the aaesthetist. In spite of the multisensor
nature of the dove gproad, it appeas that, during

the majority of operating periods when no emergency
conditions occur, a good indicaion of
unconsciousness can be obtained from a single on-
line monitored variable. Thus, the use of arteria
blood pesaure, monitored via an inflatable aiff using
a Dinamap instrument, has been investigated for
feadbadk control with simple Pl strategies (Robb et
al, 1988. In this case, the mntrol actuation was via a
stepper motor driving the dial on a gas vaporiser.
This concept forms the basis for the modelling and
control aspeds of unconsciousnessin the foll owing
work. In particular, we have focused on the drug
isoflurane in these studies, it being commonly used
in modern surgery.

The mntrol theme & the heat of this gudy is that of
Model-Based  Predictive  Control, particularly
Generalised Predictive Control (GPC) (Clarke et al,



1987, which is e by many as the ntrol strategy
that had the most significant impad on solving
complex industrial problems, and including those
within the redm of biomedicine (Mahfouf and
Linkens, 1998. In this paper hard constraints are
introduced as part of the optimisation problem and
the CARIMA® model, normally used in the standard
GPC agorithm, is extended to include a fuzzy
modelling approach via the Takagi-Sugeno-Kang
model (Takagi and Sugeno, 1985, but in the
CARIMA sense. Hence, this paper is organised as
follows. Sedion 2 will review the re-circulatory
physiologicd model relating to the drug isoflurane
(Derighetti, 1999, together with our own
modificaion in terms of the cntrol aduation being
via asyringe pump rather than a gas vaporiser. In
Sedion 3, the development of constrained GPC but
using the fuzzy modelling approach is briefly
reviewed, while in Sedion 4 results of the simulation
experiments are presented and discussed. In Sedion
5 the transfer of the overall control system to the
operating thedre is described and the red-time
experiment hitherto conducted is presented and
analysed. Finaly, in Sedion 6 conclusions relating to
this gudy together with plans for the future ae
given.

2. ANAESTHESIA MODEL RELATING TO
ISOFLURANE

The model, whose diagram is down in Figure 1,
consists of two parts; one part for the uptake ad
distribution of drugs, and the other part for the
circulation of the bloodflows. Space prohibits
expanding of the methoddogy behind this model
derivation but suffice to say that the overall non-
lined model aswociated with the aaesthetic
describes  such pharmaookinetics (uptake ad
distribution) of the drug, the drculation model (blood
flow), as well as pharmamdynamics (effeds of the
drugs on the patient’s body) as foll ows:
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i=1...,9 (number of compartments).

The state vedor p(t) describes the partial presaure of

the anaesthetic gas in every compartment, the input
being the mncentration of the anaesthetic gas in the
inspired air (pa; ), Vrefersto ‘venous, Arefersto

“Artery”, and Lrefers to “Lungs’, gjo. by, ki,
CQOp, and A, are dl terms which can be inferred

! Controlled Auto-Regressve Integrated Moving
Average

from the partial presaures or are mnstants which are
either patient or drug dependent (Derighetti, 1999.
The Mean Arterial Presaure (MAP) is given by the
foll owing equation:
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MAP = CO,

where CQ,is the total cardiac output prior to any
anaesthetic being gven.

Becaise giving 100% O, can cause the patient to
have lung problems, a mixture of 70% N,O and 30%
O,is preferred when anaesthetising them. N,O

having a mild anaesthetic efed ads as a carier for
isoflurane and lowers the drug equilibrium time.
Hence its effed was modelled by increasing the
effedive dr-flow q,; in Equation (1) to take into
acount the partial presaures in relation to this gas
(Derighetti, 1999. Moreover, we aoped a more
recat techniqgue which consists of delivering the
anaesthetic in a liquid form which will be
transformed into a gas as it passes through a heaing
chamber; this having the alvantage of avoiding to
drive avaporiser with all its ftware mmplexity. In
order to refleat such a modificaion, a model which
describes the dynamics asociated with the
vaporisation process was €licited through an
experimental study using the following first-order
differential equation:

= _klg inr piso_ gas + k29 piso_liq (3)

piso_gas -

where Piso gass Piso_liq &€ the cncentrations of the
anaesthetic in “gas’ and “liquid” forms respedively,

and  kiy, kyjare onstants. The following
approximate liner model was obtained:
Iso_Gas 34
= = 4

Iso_ Liquid 1+0.44s

The model described by Equations (1), (2), and (4)
will form the basis for a dosed-loop control strategy
design wsing the theme of constrained fuzzy model-
based predictive control as will be outlined in the
next sedion.

3. CONSTRAINED FUZZY GENERALISED
PREDICTIVE CONTROL

3.1 Controller Formulation
The longrange predictive cntroller developed in

this reseach study is based on the Popular
Generalised Predictive Control (GPC) strategy



(Clarke et al, 1987 whose theoreticd badkground is
briefly reviewed here:

Consider the following locdly lineaised dscrete
model in the backward shift operator Z ™

Az M Ay(t) =Bz HAut-)+C(z ) (4
where:

Az =1+az  +a,z7 +..+a, 2"
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B(z7)=b, +b,z" +byz™" +..+b, Z
Czh=co+czt+c,z7 +.+c, 2P
{ (t) is anuncorrelaed randomsequence
A=1-71

u(t) represents the oontrol input and y(t) is the

measured variable. The ontroller computes the
vedor of controls using optimisation of a function of
the form:
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where N; is the minimum costing (output) horizon,
N, is the maximum costing horizon, NU is the
control horizon, w isthe future set-point, A(j)isthe

control weighting sequence, and P(z™) is the
inverse model in the model-following context with
P(1) =1. Furthermore, the C(z*) polynomial in
Equation (4) is replacad by a fixed pdynomial
T(z') known as the observer polynomial for the

predictionsP(z 1) §(t+j). This as drealy
mentioned, enables an offset of the dfed of the

A operator as a high-pass filter on the input-output
data.

When the antrol horizon NU (which refleds the
number of degrees of freedom for the cntroller) is
greder than 1, the solution of (5) in the
unconstrained case (physicd and termina
congtraints not included prior to ogtimisation) differs
from that in the constrained case (physicd and
terminal constraints included before optimisation
takes place. In the latter case the final solution can
be found in the ‘optimal’ sense. Hence, one way of
solving (5) in the mnstrained case is to consider the
following Least Squares Inequality (LSl) problem
(Mahfouf and Linkens, 1998):

Minimise Hx>h

(6)

|Ax=b|  subjead  to

Where x is the NU solution vedor, H is the
gtatic/dynamic  constraints information matrix and
hisavedor containing the lower and upper limits of
the monstraints. In the cae of Equation (5), we have:
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H and h will depend on the types of constraints
which are mnsidered, i.e. input rate mnstraints, input
magnitude nstraints and output  magnitude
congtraints. If al three types of constraints are

considered, then we would write the conditions as
follows:

[AUpin SAU(t+ j—1) < Aupax
Mmin sus Unax (7)
%‘Dmin < (D(t + J) < cDmax

WhereAumin ' Aumaw Unin » Umax: (Dmin ' and quax ae
the minimum and maximum alowed control
increments, absolute cntrol moves, and the outputs
respedively. It is worth noting that the Quadratic
Programming (QP) problem can be solved using the
method proposed by Lawson and Hanson (1974.
Also, when using both input and output constraints
simultaneously infeasibility problems may be
encountered (when the optimiser cannot satisfy all
congtraints at once). Several methods can be used to
circumvent such a problem, but the one we used in
this instance is the hierarchicd remova of output
constraints garting from the bottom predictions urtil
the optimiser is cgpable of returning a feasible
solution (Mahfouf and Linkens, 1998.

3.2 Fuzz ProcessMode

One mmon denominator of al Model Based
Predictive Control (MBPC) strategies which
represents their “raison detre” is their asumption
of a model which has to be quite acarate. The
modelling of red world systems, however, often
presents problems. As proceses increase in
complexity, they bewmme less amenable to dred
mathematicd modelling based on physicd laws snce
they may be distributed, stochastic, non-linea and
time-varying, uncertain, etc. According to Zadeh's
Principle of Incompatibility (Zadeh, 1973, the doser
one looks at a red world problem, the fuzzer
becomes the solution. Hence, the modelli ng problem,
instead of being posed within a strictly analyticd
framework, is based on empiricdly aauired
knowledge regarding the operation of the process

Many fuzzy modelling methods have been proposed

in the literature. Most are based on colledions of
fuzzy IF-THEN rules of the following form:

IF x, isB*and...andx, isB" THENyisC  (8)



where 1<:(xl ..... xn)T and y are the input and

output linguistic variables respedively, and B' and
C ae lingustic values charaderised using
membership functions. It is considered that this fuzzy
rule representation provides a mnvenient framework
to incorporate human experts knowledge

An aternative method o expressng fuzzy rules
proposed by Takagi and Sugeno (1985 has fuzzy
sets only in the premise part and a regresson® model
asthe mnclusion:

IF x, isB*and...andx, isB"
1 n (9)

THEN y=cy +¢ X +---+CX,

where x, yand B' are defined as above, and C; are
red-valued parameters.

Consider a single input single output (SISO) system
which can be modelled using the method proposed
by Takagi and Sugeno. Asauming that the input
spaceis partitioned using p fuzzy partitions and that
the system can be represented by fuzzy implicaions
(one in eat fuzzy sub-space, we can write the
followingimplication L:

L' :IF y(t)is B' THEN y,, (t +1) = al y(t) +---

YRR . (10
+al y(t- ] +1) +bju(t) +--+biu(t -1 +1) +k

Such model representation in the cnsequent part of
the @ove implication is cdled a Auto-regressve
Moving Average (ARMAX) model. Severa linea
adaptive predictive antrollers have been designed
using such model representation, however, the most
popular linead model structure is the so-cdled
CARIMA structure which was found to be dfedive
against offsets which can be present in the data.
Usng a CARIMA model structure, the fuzzy
implication (10) can be written as foll ows:

L' :IF y(t)is B' THEN Ay, (t +1) = —ajAy(t) -
= ajAy(t =, +1) +bjAu(t) +--- (11)
+ b|i Au(t - nb +1)

The model parameters can be epresed in the
foll owing matrix form:

%f...anal b'...b,t g
=0 ' : O (12)

. :
B.a,” b ..b, P

The overal fuzzy model output (in incremental
form) can be written as foll ows:

2 This model can be dther linea or non-linea.

Dy(t+1) =©' B(1) (13
where,
B‘Ay(t), _Ay(t _1)! T DT
O(t) = FAy(t-n, +1), Au(t), Au(t =D, -, 5 (14)
Hw(t-n, +1) H

@' arethe parameters © but weighted by 3

B=|B. By - Bi - Bp) (15)
and,
.Bi = B [y(t)] (16)

)
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B'[y(t)] is the grade of membership of y(t) in B and
B isavedor of the weights assgned to eadt of the p
implicaions at ead sampling instant.

4. SSIMULATION RESULTS

The simulation study considered the @ntinuous non-
linea system (1-3) which was represented in
MATLAB-SIMULINK, using a sampling interval of
1 minute, while the external constrained predictive
control module was coded in ‘C'. For parameter
estimation, a UD-fadorisation method was used on
incremental data. At time t=0 an initial arteria
presare of MAR, =90 mmHg was assumed. The
set-point command was 70 mmHg then 80 mmHg for
a 400minute tota simulation time. The GPC
algorithm used a combination of tuning fadors of (1,
8, 2, 0) for (N4, N,, NU, A) together with a filter
polynomial T(z')=(1-0.8z7%)?. Different fuzzy
partitions of the input space ca be used; we dose
trianguar shapes for simplicity. The dgorithm used
the three types of constraints with the following
limits:
-02<Au(t+j-1)<0.2
Osu(t+j-1)<5
W-55P(t+j)sw+5
j=1...,NU
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The experiment considered a fuzzy model with 2
partitions and the output obtained was that shown in
Figure 2 where it can be seen that tradking was better
without too much compromise on the cntrol adivity
which remained very reasonable.

It is worth noting that this smulation study and
others (not reported here) formed the basis for the



transfer of the overall closed-loop control system to
the operating theare for administration of isoflurane
during surgery as the next Sedion explains:

5. REAL-TIME EXPERIMENTS

The red-time dosed-loop control system which was
transferred to the operating theare wmprises (see
Figure 2):

e An IBM compatible microcomputer which
incorporates the control system.

e A Braun Perfusor Seaura digital pump driving a
disposable syringe containing a liquid solution of
isoflurane.

e A Dinamap Instrument for measuring the aterial
blood pesare.

e A Capnomac Ultima Device for measuring the
inspired and expired isoflurane wncentrations.

The links between the syringe pump, the Capnomac

madiine, the blood pesare monitor, and the

computer are viathreeRS-232 serial ports.

After locd Ethics Committee gproval, one patient
was <leded for the experiments as he underwent
surgery which required anaesthesia. Figure 4 shows
the result of the trial using the fixed constrained
generalised predictive @ntrol algorithm with alinea
model for estimation. The target MAP seleded in
this case was 80 mmHg. As can be seen from the
same figure tracking was excdlent with a reasonable
control adivity.

6. CONCLUSIONS

A new algorithm, which combines the alvantages of
model-based predictive wntrol, particularly GPC in
terms of constraints, and fuzzy systems, which
alows the ésorption of model uncertainties, has
been propased for the control of unconsciousnessvia
blood pesare measurements. First, a simulation
platform was built around a non-linea redrculatory
physiologicd model which was modified to include a
more dficient way of delivering the anaesthetic in a
liquid form rather than gas. The simulation results
showed that the fuzzy-based constrained algorithm
was effedive in terms of set-point tradking and drug
consumption. So far, only one dinicd trial was
conducted where the unconstrained controller was
validated, however, in the next few months it is
hoped that the constrained version will be tested in a
series of trials and that the control system is extended
to include an inner loop which will take into acount
the true inspired concentration of isoflurane.
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Fig. 2 Fuzzy constrained GPC using the simulated anaesthesia mode!.
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Fig. 4 Red-time mnstrained GPC with input constraints in the operating

thedre during surgery.



