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Abstract: This paper investigates Hoo reduced order unbiased filtering problems for a
nominal bilinear system and a bilinear system affected b y norm-bounded structured
uncertainties in all the system matrices. First, the un biasedness condition is derived.
Second, a change of variable is introduced on the inputs of the system to reduce the
conservatism inherent to the filter stability requirement and to treat the product of
the inputs by the disturbances. Then the solution is expressed in terms of LMI by
transforming the problem into a robust state feedback in the nominal case and a
robust static output feedback in the uncertain case. Copyright ©2002 IFAC
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1. INTRODUCTION

The functional filtering purpose is to estimate a
linear combination of the states of a system using
the measuremen ts. In this paper, a reduced order
H o filtering method is proposed to reconstruct a
linear combination of the states of bilinear systems
by exploiting the nonlinearities in the nominal
and the robust cases. This is achieved through
the design of an observer which dynamics has the
same dimension than this linear com bination. In
addition to the stability and £, gain attenuation
requirements, the filter must also be unbiased,
i.e. the estimation error does not depend on the
states of the system. This condition i1s expressed
in terms of as many Sylvester equations as there
are inputs, with an additional Sylvester equation
due to the linear part of the bilinear system. Qur
approach 1s based on the resolution of a system
of equations to find conditions for the existence
of the unbiased reduced order filter; we then solve
the exponential convergence and £, gain attenua-
tion problems which are reduced to a robust state
feedback in the nominal case. It is shown that
the robust functional unbiased filtering problem
for uncertain bilinear systems subjected to time-
varying norm-bounded uncertainties can be seen
as a particular case of a static output feedback one

under some conditions. This problem requires to
solve Linear Matrix Inequalities (LMI) with an
additional non convex Bilinear Matrix Inequality
(BMI) constraint.

The paper i1s organized as follows. The condi-
tions for the unbiasedness, exponential conver-
gence and £, gain attenuation of a reduced order
Ho functional filter for continuous-time nominal
bilinear system are studied in section 2. It is
shown through section 3 that the concerned ro-
bust filtering problem for bilinear system affected
by structured norm-bounded time-varying uncer-
tainties can be solved as a static output feedback
problem. Then, section 4 concludes the paper.

2. REDUCED ORDER UNBIASED #H..
FILTERING IN THE NOMINAL CASE

2.1 Problem Formulation

The nominal bilinear system considered in this
section is given by

7= A% &+ ZAiuix + Bw (la)
=1
y = Cx + Dw (lb)

z = Lx (1c)



where z(¢) € IR"™ is the state vector, y(¢t) € IR?
is the measured output and z(¢¥) € IR" is the
vector of variables to be estimated where r < n.
The vector w(t) € IR? represents the disturbance
vector. Without loss of generality, it is assumed
that rank . = r. The problem is to estimate the
vector z(t) from the measurements y(¢). As in
the most cases for physical processes, the bilinear
system (1) has known bounded control inputs, i.e.
u(t) € 2 C R™, where (i=1,... ,m)

Q= {u(t) € R™ | uhyin <’ (1) < s } - (2)

The ROUTF (Reduced Order Unbiased Filter) is

described by
HO’H‘Z iUi’?+J0y+Z Wy (3a)
=1 =1

n+ Ey (3b)

n

z

where £(t) € IR" is the estimate of z(¢). In order
to avoid that some linear combinations of com-
ponents of vector z be directly estimated from
the measurement y without using the filter state
vector g, this assumption is made in the sequel.

Assumption 1. Matrices C and L verify

rank [CT LT] =rank C + rank L. (4)
The estimation error is given by
e=z—;t2=Lvr—-2=e—EDw (5)
where
e =V —n (6a)
¥ = L- EC. (6b)

The problem of the ROUF design is to determine
H® H' J° J' and F such that

(i) the filter (3) is unbiased if w = 0, i.e. the
estimation error is independent of =,
(i1) the ROUF (3) is exponentially convergent for
u(t) € Q,
(iii) the mapping from w to e has £, gain less than

a given scalar v for u(t) € @ (van der Schaft,
1992).

2.2 Unbiasedness condition fulfillment

From (5), notice that the time derivative of the
error e 1s function of the time derivative of the
disturbances w. To avoid the use of % in the
dynamics of the error e, consider € as a new “state
vector”. Setting u® = 1, then the £, gain from w
to e has the following state space realization

e=> u'HE+(¥B-) JDu)uw
1=0 1=0
+ i(m" —H'U - J'Clu'z Q)
1=0
e=¢— FDw

and the unbiasedness of the filter 1s achieved iff

the following Sylvester equations

VA — H'U — J'C =0 i=0,...,m (8)
hold. As matrix L is of full row rank, the relations
in (8) are equivalent to (: =0,... ,m)

(WA ='W =7 C) [L L - L) =0 (9)

where L' is a generalized inverse of matrix L
satisfying L = LL'L (since rank L = r, we have

LLY = 1,). Using the definition of ¥, (9) is
equivalent to (i =0,...,m)
0=VA'L' - H'WL' - JCL! (10a)
0=VA'+ HEC-J'C (10Db)

where A' = AT, — L'L) and C = C(I, — L'L).
Using (6a), relation (10) can be rewritten as

H=A'-KC' i=0,..,m (11)

where A = LA'L!, C* = [CA’QT] and
K =B K] with K'=J' - H'E. (12)

Then relation (10a) can be expressed in the fol-
lowing compact form

KS =LA (13)
where A = [ZO Z’"} and
cA® cat CA™
C 0 0
Y = 0 c (14&)
0
o .. o <C
K=[BK ... K" (14b)
and a general solution to equation (13) if it exists,
is given by _
K =LA + Z(I(ny2), — =) (15)

where 7 = [ZE 70 .. Z’"] is arbitrary.

Lemma 2. The unbiasedness of the filter (3) is
achieved if and only if the following rank condition

rank ¥ = rank [(LZ)T ET] (16)
holds. |

Proof. Using the previous developments, filter (3)
is unbiased, i.e. relation (8) holds, iff there exists
a solution K to (13), then iff the rank condition
(16) is satisfied. a

2.3 Unbiasedness condition under ED = 0.

Using the previous steps, the mapping from w to
e, given by (7), becomes

E= D WA - LAS A (u) - ZEAl(u)) 7
1=0
+ (LB - LAS Ay (u) — Zg Az (u)) w

(17)



where Zs = Z(I(;42), — ') and

Yo utcatnt cB
Tort PD

Ay (u)= e Ao (u)= u. . (18)
um.CLT W™D

Due to the product Z(I(mi2), — SST)A1(u)E, the
error 1s bilinear in the gain parameter Z in sys-
tem (17). This bilinearity is intrinsically linked
to the unbiasedness condition (8). Indeed, the
“bilinearity” H'¥ in (8) yields a gain K* (see (12))
containing the product H'E. In order to avoid
this bilinearity, we consider ED = 0 in the sequel,
this allows us to have LMI tractable formulation
for the problem instead of intractable BMI one.
Adding the constraint £D = 0, relations (13), (14)
and (15) become
|

KT = [0 LZ] where ¥ = [giE] (19)
and a solution to (19), if it exists, is given by

K=[0 LA|S' + Z(mi2, - ST (20)

So, we give the following lemma which is derived
from lemma 2.

Lemma 3. The unbiasedness of the filter (3) is
achieved under ED = 0 iff the following rank
condition 0 IA

>
holds. |

rank & = rank

(21)

Now, assume that the condition (21) in lemma 3
holds. Then relation (8) is verified with K given
by (20) and we have &(t) = e(t) in (17), i.e.

€& = (i WA~ [0 LZ] ETAl(u) — Zg/\l(u)>e

1=0

E ™ uiH?
i=0

+ (LB = [0 LA] S Az (w) = Zsha(w)) w (22)

where Zg = Z(I(m+2)p—ffT). Now, as the item (i)
of the design objectives has been solved, it remains
to treat the points (ii) and (iii) of these objectives.

2.4 Ezrponential stability and £, gain attenuation

Now, we introduce a change of variables by con-
sidering each w'(t) in (22) as a “structured uncer-
tainty”. Notice that the definition of the “uncer-
tainty set” Q in (2) can leads to some conservatism
since, in the general case, |uly,| # |uba| With
[tboin] # 1 and |uln,.| # 1. To reduce this con-
servatism, each u'(t) can be rewritten as follows

u'(t) = o' + o'l (t) (23)
where (i=1,...,m)

o = 5(ufrJin + ufnax)a a'i = 5(ufrJax - ufnin) (24)

and a® = 1, 6° = 0. The new “uncertain” variable

o =
is e(t) € @ C R™ where Q is defined as
Qi={e(t) ER™ | ehyy=—1< ' () <efpax=1} . (25)

min —

By using relations (23)-(25), the dynamics of the
error e(t) in (22) can be rewritten ag follows
e=A—-ZC+ ZA—ZCS Ac(e)He e

+(B- 26+ (B-26) Au(e) ) w  (26)

with
A=Y oA -0 LA]T'e, (27a)
=0
= (Iimyap — S22, (27b)
E= o7 ... omAm]=[o LA]T'T, (27¢)
€ = (Ipmi2p — ST, (27d)
B = LB=[0 13 ]S T, G=(Tmy2p—S )T, (27¢)
B= [0S0 C = (Ipnyo)p — SZND,  (276)
and retca'rt smcA™ LT
0 0 a9cB
a"D
I'=| olort T = [ . } (28a)
0 a":‘D
RS 0 smcrt
0 0 Yo atcatrt
D = oD ' : 7@ = QD?LT . (28b)
. 0 0'79LD amcrt

More, AE(E) c IRmrxmr, Aw(e) c quxmq’ Fe =
IR™*" and H,, € R™?*? are defined by

Ac(e) = bdiag(e' I, ... ,e™I,), (29a)
Ay (e) = bdiag(e' Iy, ... ,e™1y) (29b)
H. = [1r . Jr]T7 Hy=[1s Jq]T7 (29¢)

where bdiag(.) denotes a block-diagonal matrix.
From (25), the “uncertain” matrices A.(e) and
Ay (e) are bounded as

[Ac(e)l < 1 and [JAu(e)]] < 1. (30)

According to the previous developments, (26) can
be rewritten as the following system

é=(A-Z0) e+ ([A ]E}JB] -7 [CC @I@D [119:2;]
[qe [F} [00:_0 } [pe]
qw | =1 0 e+ |001H, Pw
e _]:- _O_OT_O_ W

(31)
connected with

s I

At this step, we can see that the Ho, ROUF can be
solved as a particular case of a dual robust state
feedback problem with structured uncertainties.

Ace) O
0 Aule)

So, we can give the theorem which ensures the
exponential stability of the ROUF (3) and the £,
gain attenuation from w to e.



Theorem 4. Suppose that condition (21) is veri-
fied. If there exist matrices P = PT > 0, S. > 0,
Sw >0, Y and a scalar g > 0 such that (“e” is the
transpose of the off-diagonal part)

(a) . . . ﬁfse 0
AlpP—cTy —5. o0 0 0 0
= =T
IET P—([;T Y 0 —Su o2 0 _To < 0. (33)
BP-cTy o 0o —~%I, 0 H,S5
SeHe o o 0 —Se 0
0 0 0 SwHw O —Sw

with (a) = AP+ PA - C"Y —YTC+ (1 + p)1,,
Y = ZTP and where S. and S, are diagonal
matrices with the same structure as A.(e) and
Ay (t) respectively, then the ROUF (3) for the
system (1) is exponentially stable and has a £,
gain from w to e less than or equal to 7. |

Proof. By considering system (31)-(32) as a diago-
nal norm-bound linear differential inclusion (Boyd
et al., 1994), the following auxiliary system de-
rived from (31) (see (Li and Fu, 1997) for details,

omitted because of lack of place)
é=(A-ZC) e+ ([Ase—lh oo/ :7_13]

P I
_Z[Csel/z Gswl/zw 13]) fgui

(34)

is introduced, where S. and S, have been defined
in the theorem. Let Y = Z7P. Then by using the
bounded real lemma, system (31)-(32) is exponen-
tially stable and has a £, gain from w to e less than
or equal to v if there exist P = PT > 0, S. > 0,
Sw >0, Y and a scalar g > 0 such that matrices
in system (34) satisfy this inequality

(a) . . 0 I,
sTYET p soY¥ Ty 1 0 0 0 0
STV p—szV? Ty 0 —Img 0 0O 0
~1B Py T Y 0 0 —Iy o0 .
si?E, 0 0 0 —Ip, O
0 0 0 (8) 0 —Img
I, 0 o 0o o 0 —I.

with (b) =~v~'S4/*H,,. Pre- and post-multiply this
inequality by bdiag(l,, St/? Sb/% v1,, SE/% S42 L),
and use the Schur lemma to delete the last r
rows and the last r columns, the LMI (33) is
obtained. Assume that (21) is verified. Then using
Z = P7'Y"T and (20), the matrices of ROUF (3)
are given by (11) and (12). a

3. ROBUST REDUCED ORDER #H. FILTER

In this section, we will make reference to the
following uncertain bilinear system
i =) (A +AuB)u's+ (B+As(t)w (35a)
1=0
y = (C+Ac(t))r+(D+Ap(t))w
z = Lz (35¢)

de SYPTT, 0 0: o Pe
G |=|__0o_ |et]oO 0|7_152/2Hw Duw
e I, 0 oT 0 w

0
0
o |<0
0
0

where z(¢), y(t), 2(¢), w(t) and u(¢) have been
defined in section 2. The matrices A%, A*, B, C, D
and L are known constant matrices that describe
the nominal system of (35) given by (1).

The uncertain matrices A,o(t), Ap(f), Ac(t),
Ap(t) and A ,i(t) can be written as

Ao(t) Ap(t) ML
Ac(t) Ap(t) M,

(A ..

xbdiag(A'(t)) [E;T
N ———

At

A°(t) [Eg E?U] (36a)

Aam()| = (M} .. M7

E;"T] " (36b)

where ML € R™*% M) ¢ RP*% E. ¢ R%*™ and
E% € R%*? (; = 0,...,m) are known constant
matrices which specify how the elements of the
matrices of the nominal system are affected by the
uncertain parameters in A'(t), (1 =0,... ,m). The
time-varying uncertainties in (36a) and (36b) are
assumed to be structured and bounded, i.e. A'(t)
are diagonal matrices satisfying ||A*(t)]| < 1o,

For the same reasons explained in section 2.3, the
constraint
E My p] =0 (37)

is used instead of FD) = 0 in the sequel of section

3. Then (19)-(21) must be replaced by

|
KE = [0 0 LA] with £ = [Agy }i] (38a)
|

K = [0 0 LZ]EMZ(IWH)},—E SH o (38Db)
rank 3 = rank |:_0 _():L_A_ . (38C)
>

Introducing the augmented state vector ¢ given by

€T = [xT eT] , (39)

using (22) and the change of variables in (23)-(25),
the system obtained by the concatenation of (3)
and (35)-(36b) is given by

(i([“’o"" oL | Ao 1 o)

E s 53 g 20082 0
+3 e ([0 + [ | A e o]
=1
_[Ul]?Mg] Ao(t)[Eg 0]))5_1_( ‘I’B—Zio a’J’D]
E o P

- i (5i [U’S’D] + [G’J?M5:| 5iA0(t)E?u)> w

3

(40)

where matrix ¥ satisfies the unbiasedness relation
(8). Using (11), (12), (27)-(29) and (38a), the

uncertain system (40) is equivalent to



_ ™ oatAt 0 A, O 0 P
()= [ =0 _A—Z(C] &+ [ 0 K—ZEEE—ZE] [53]
Mm? Ma pg
| By —ZCys By —ZGxr, | | e
_ 0 M, 2 M? 0
+ [BWU—Z@WU BWU—Z@WU] [— ] + [BM—Z@M ] Pu
~ 0 —0
+ [BM ~7C 37, ] Pu + [5%e]w
e [ o] o
o 0 H. 0
o _0_0_ H.o
o ES 0 0
q¢ _® 0
qO =1 E; O £+ o w
| |lo_o | [ F
o £ o 0
1 E. 0 °
—0 w -
L 9w J L O O -
e = [0 ]T] ¢

(41)
connected with

I o7 Tl _oT 17 _ %
T 7 T!og 7 oT! oT _T o _
[pm Pe Pwlpe p¢ puw 1B Pe Du ] = Ale,t)

P
I oT Tl o7 17
T T T, 0 T 0 —0 T _0
x [qm e Qult ¢ G 1T T o ] (42)

o~

q

with A(e,t) = bdiag(AL(e), Ac(e), Ay(e), A%(2),
A(t), A%(t), (=, 1), A(e, t), A’ (e, t)) and where the
matrices which have not yet been defined are given
by (with € =1 + ...+ £y)

A, =[otal o omam], (43a)
M, = [oleml ozmM;n] , (43b)
M, = [alel amM;n] , (43¢)
By = LMY — [00 LA S, (43d)
Gar = (Imyzyp — 55N T, (43e)
By, = LMa— [0 0 LA] Sy, (43f)
Grr, = Limtap — B8N T, (43g)
By, = LM, - [0 0 LA| ST, (44a)
Gz, = Timyz)p — SZN T35, (44b)
By, = - [0 0 LZ] ST, (44c)
Caz, = Limyzyp — EZHML (44d)
— T
o= L] emT (44e)
Eo= " . EQT]T €™ (44f)
— T =
» = [E;T . E;"T] e R (44g)
— T
B, = [E?UT E?UT] € R4 (44h)
Ag(e) = bdiag(e In,...,e"1y) (44i)
A(e,t) = bdiag('A%(t),... ,e™A%(t)) (44j)
Ale, t) = bdiag(elAl(t),... LeTA™(E)) (44k)
with

[ oM M,
aDME 0 @
TM = ) 7Tﬁa = . (45&)
am.Mg 0
0 0
_ 0o .. 0
rcMey
0
R I } M= |7 (45D)
L o

Notice that, from (25) and the definition of A‘(t),
we have the following bounds
AN <t |BEn] <1 [BEn) <1 @6)

Note that the unbiasedness condition (8) for the
filter (3) is verified for the nominal case, i.e. for
M.=0,(i=0,...,m) and M) =0.

Define a block-diagonal matrix S > 0 with the

same structure as the uncertain matrix A(e,¢)
given in (42)

S=bdiag(Ss Se, Sur S, Sa, S, Fas Sa, Sa).  (47)
where all the submatrices are diagonal. Then,
in the system (41), the determination of gain 7
can be transformed into this robust static output

feedback control problem (see (Li and Fu, 1997)
for details, omitted because of lack of place)

¢

[ =C.£+D.y 5]
§=Cyt+Dyu [
u=-77y

A+ B, [ﬂ +B.a
(48a)

LIS IS
[

(48b)

where 7 is the static output feedback controller to
be designed in order to achieve stability and per-
formances like attenuation from the “augmented
perturbation” [;7 717 to the “augmented con-
trolled output” [7z .7 ]¥. The vectors @ and 7 play
the role of “control input” and “measured output”,
respectively. The matrices and the vectors intro-
duced in (48) are given by

. . gl/2c
_ —1/2 —1 _ q
B, = [B,s™'* 1 7'B,].C.= c. (49a)
. gl/i2p g-1/2 7_151/2D
D.., = qp—1/2 -1 ” (49b)
D.,S v 'D.y
D, = [Dy8™/ 57 Dyu, (49¢)
where [ m
a'A' 0 0
A= |Z 0 m [ e = o]
0 A
o) -
A, 00M M. 0O M, M° 0 |B
< = ~ =
0 A BBy By By By, Bu By |B
T _ _ —oT — |
c, A o 0B EF0EY ELolo
C = ___:,IT _____________ _|__
e 0 L0 0 00 0 0 ol




000000000:0
000000000 0
ooooooooolﬁw
000000000] 0
Dy Dy 000000000}0
D., D.,| |000000000E;
000000000l 0
000000000} 0
oooooooooiﬁfy
L000000000| 0
[Dpryw]:

[0 TG Gu Gy, Gy, Gy, Gu Gy, 1G]
Then the following theorem is dedicated to the
design of the gain Z.

Theorem 5. Assume that the rank condition in
(38) holds, there exists a robust ROUF (3) for
the uncertain system (35) if there exist matrices
P=P7 >0, Q=Q" > 0 and diagonal matrices
S > 0, S > 0, such that (with € = ¢, + ...+ €y,
s =mn+ mr + mq+ 24 + 20 + ZmZO)

rATp+PA PB, PB, CT CZS b
—=r| BLP 4?1, o DI, DI s |
Ky| »7p o -s b7, pls [Ky<0 (h0a)
Ce Dew Dep —Ir 0
L sc; SDgw SDgp 0 —S |
[Q@AT+AqQ QcT Qcl B, B,S |
7 C.Q —Ir 0  Dew DepS |__
K,| c.@ o -5 Dgu Dg,5 |Ku<0 (50Db)
BT pl, T, —v?1, o0
L sBl spl spl o -5 |
Intr =PQ (50¢)

where § = 8!, K, = bdiag(K,, ,4=) and K, =
bdiag(Ku, I,45) such that K, and K, are basis
of the null spaces of [Cy Dyp Dyw] and [BT o],
respectively. All gains Z are given by

7 =BRKCh, +Z —BLBrZC,Cy  (51)
with .
K=R;'V}/?R,(CrV,Cr)? ~R7 "B, ViCr (CrViCr)

-1
Vv, = (BLRl_lBTL - Q) >0

=T =T (= —r\ 1= =
V=R, - B Vl—VlcR(CvacR) CrV:|B

[-B.|QA™+AQ QC! QCT B, B,S |
0ol €Q - 0 D. D,S
[g 5]_ 0 1 CQ 0 -S Dgw DgS
e C| | o : B. DI, DI, —*I, o
T I A
¢« ! ¢c,Qq SD,, Dy, © 0

and R1, R2 and Z are arbitrary matrices satis-
fying R1 = RT > 0 and ||Rz|| < 1. Matrices By,
Br, C; and Cg are any full rank factors such that
E:ELER andé:éLGR. .

Proof. By using the bounded real lemma, the the-
orem can be proven using the projection lemma

and formulas given in (Twasaki and Skelton, 1994).
Then the robust ROUF (3) is finally obtained by
using relations (11), (12) and (38). a

Remark 6. Unlike the robust ROUF case which
has been solved above as a static output feedback,
notice that the full order robust filtering problem
can be transformed into a full order dynamic
output feedback problem and is then solvable
via LMI only (Li and Fu, 1997; Bittanti and
Cuzzola, 2000). Then, in full order robust filtering,
BMI (3.16c) becomes [ @] > 0. That is the
main difference with the reduced order filtering
where there is an additional non convex constraint
(BMI). There is no efficient algorithm to solve
this non convex problem which can only have
local solutions by means of heuristics such as the
cone complementary linearization (El Ghaoui et

al., 1997). |

4. CONCLUSION

This paper has presented a simple solution to
the %o ROUF problem via LMI methods for
bilinear systems. After giving conditions for the
existence of the ROUF, 1t is shown that the
ROUF design is reduced to a robust state feedback
problem in the nominal case and to a static robust
output feedback one when the bilinear system is
affected by the structured norm-bounded time-
varying uncertainties; then there are an additional
non convex relation to solve.
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