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Abstract: The problem of identifying a restricted complexity model for control
purposes is considered in this contribution. A new iterative identification method
is proposed in which local and global information about the control design criterion
is blended. The global information, which is used for faster convergence, comes
from the usual extrapolating property of a model and the local information, used
for higher accuracy, is the sensitivity of the closed loop system to the model
parameters. It is shown that the method has the same stationary points as the
control design criterion and it is also shown that if the approximated Hessian is
sufficiently accurate, the method converge locally.
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1. PROBLEM STATEMENT
The true system is described by

y(t) = Go(q)u(?), (1)
where the dynamics between the output y(t) and
the input u(t) is governed by the unknown linear
time-invariant discrete transfer operator Gg(q).
The system is for simplicity assumed to be single
input/single output and to keep the ideas trans-
parent and avoid technicalities we will also assume
that it is noise-free. The system is controlled by
a one-degree of freedom linear time-invariant con-
troller C(q), i.e.

u(t) = Clg)(r(t) —y(t), (2)
where r(t) is the reference signal. The time ar-

gument will be omitted frequently to ease the
notation.

In this presentation we will consider model based
control design, where as an intermediate step a
model of Gy is used to design the controller. Let
Go be modeled by the transfer function G(6)
parameterized by the real valued vector 6. Since
the design is based on the model, the controller
can be expressed as a function of the model, i.e.
C = C(0). Then the designed closed loop con-
trol system can be expressed as y(6) = T(0)r

where T(0) = % The achieved closed

loop response is denoted by Ty(6) = %

The objective of the control design should be
to minimize the difference between the designed
and the achieved performance. The control per-
formance can be measured by some norm, e.g.

N
T6) = 51 S UTEO T ©)

The task is then to design a controller that
minimizes (3) w.r.t. . Introducing the designed
and the achieved sensitiity function, (8) =
rewow = 1= T(0) andS o(0) = o, oy =
1 — To(8), respectively, the criterion (3) can be
rewritten as

1 & )
J(O) = aN t:ZlEtc(a) (4)

ere(6) = S(0)(y(6) — G(0)u(9))

Here, the criterion has been arranged in a way
such that it now looks more like an identification
problem. However, since both u and y depends
on 6, i.e. they are the closed loop input/output
signals which corresponds to C(6) in the loop, this
is somewhat misleading. The expression is still
useful from an identification perspective in that it
can be used to express how the model bias should
be distributed over various frequencies so that (4)



is minimized. Hence, this expression has been a
source of inspiration for developing identification
methods that attempts to make (4) small. In the
next section we will briefly review some of these
approaches.

A new method is presented in Sec. 3. The method
uses the idea of identification wherein a model
G(0) of Gy is estimated. The model G(6) is
indirect also a model of the design criterion (4).
This is useful since the extrapolating property of
the model will give a hint of where the global
optimum of (4) is. The proposed method also
takes local variations of y and w, w.r.t. 8, into
account. Ordinary identification methods cannot
not do this, which may make them suboptimal to
the problem of minimizing (4).

The local convergence for the proposed method
is studied in Sec. 4 and numerical examples are
given in Sec. 5. Finally there are some concluding
remarks in Sec. 6.

2. PREVIOUS METHODS

2.1 Iterative identification and control schemes

In the early 1990’s the problem of turning the
control criterion into a combined identification
and control problem was attacked using differ-
ent so called iterative identification and control
schemes, e.g. (Zang et al., 1995; Schrama and
Bosgra, 1993; Astrom, 1993). The basic idea is
to approximate the criterion so that it can be in-
terpreted as identification in closed loop followed
by control design. An example of approximation
made for (4) is, in each iteration, to fix the current
model estimate at all places in (4) except in G(6).
This means that at the ith iteration the current
estimate is 6; and the identification turns into
minimizing

N
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The algorithm is at the ith iteration:

(1) Collect y(6;) and u(6;) in closed loop using
the controller based on the current model
estimate ;.

(2) Update the model to obtain 6,41 based on
minimizing the criterion (5).

(3) Goto to 1.

This algorithm is quite intuitive. However, it has
turned out to be very difficult to prove any type
of convergence result. It has also been pointed
out in (Hjalmarsson et al., 1995) that possible
convergence points of this type of scheme are
not necessarily minima of (4). A similar situa-
tion arises in adaptive control, see (Ljung and
Séderstrom, 1983).

2.2 Iterative Feedback Tuning

As a continuation of this work a method called
Tterative Feedback Tuning(IFT) was proposed, c.f.

(Hjalmarsson et al., 1998). This method is focused
on finding a local optimum to (3) or equivalently
finding a solution to J'(#) = 0. This is done by
taking repeated steps in a descent direction of the
criterion, i.e.

Oix1 = 0; — iR, 1 T (6:), (6)

where ~; is the step length and R; is typically
a Gauss-Newton approximation of the Hessian of
J(6). The key contribution in IFT is that an un-
biased estimate of the gradient J'(#) can be com-
puted using data from closed loop experiments.
It is also is shown in (Hjalmarsson et al., 1998)
that the method is guaranteed to converge to a
local optimum of the design criterion under the
assumption of bounded signals and restricted step
length. This means that the global optimum of
the design criterion also is a stationary point for
the IFT method. The drawback is that many
experiments might be necessary to perform on the
true plant due to the fact that only small steps are
taken along the design criterion in the iterative
search method and for each step new experiments
have to be performed.

2.8 Virtual Reference Feedback Tuning

Recently a new model free tuning method has
been proposed in (Campi et al., 2000). Virtual
Reference Feedback Tuning(VRFT) is a method
of direct tuning of the controller C' with a model
reference criterion, ||To —7'||. Minimizing To—T =
SoT(C(T~1Go—Gp) —1) corresponds to minimiz-
ing the sum of squares of € = @;&/25011(0(7‘7* -
y) —u) where rpr = T~y is called the virtual ref-
erence. In (Campi et al., 2000) Sy is approximated
by § =1—T. Then the method only need one set
of data {y,u} to estimate the controller.

It is pointed out in (Hjalmarsson and Lindqvist,
2001) that the method can be interpreted as
model based where the model is directly param-
eterized in terms of the controller parameters.
The design criterion can then be rewritten as a
frequency weighted identification problem using a
certain prefilter.

The main advantage of the method is that only
one experiment on the true plant to collect the
data {y,u} is required. The approximation of Sg
will however make the controller suboptimal to
the true design criterion.

2.4 Discussion

In TFT information about the shape of the cost
function in a neighborhood of the current model
parameter is extracted in each iteration. This is
at the same time the strength and the weakness
of the method. The advantage is that precise
information may be obtained even if the system
is complex. It has been shown, see (Hjalmarsson,
1998) and (Sjoberg and Bruyne, 1999), that IFT
can be applied to non-linear systems. However,
the disadvantage is that the information is local
so that only gradual changes may be possible.



Model based methods, on the other hand, can be
viewed as methods where the model is used as an
intermediate to model the complete cost function.
Hence, as evidenced by the discussion above, this
approach can be sensitive to model imperfections,
but on the the other hand may be useful to point
out the right region in the parameter space where
the optimum is. In the next section we will try to
combine the advantages of these two approaches.

3. COMBINING LOCAL AND GLOBAL
INFORMATION

In this section two new methods are presented.
They are both based on the same idea, which is to
use the extrapolating property of a model, see e.g.
the identification and control scheme described in
Sec. 2, together with local modelling based on
gradient information about the design criterion,
as in IFT.

The derivations will be based on the design crite-
rion (4). To simplify the presentation direct model
parameterization of the controller via model ref-
erence design is considered, i.e. C'(6) = ﬁlf—‘h,

where T is the reference model. This means that
5(0) = Sd =1- Td in (4)

3.1 Linearizing y and u

The main difficulty with the criterion (4) from an
identification point of view is that y(4) and u(0)
depends on the model. The idea is to linearize
y(#) and u(f) around the current model estimate

0;, which results in the following approximation
of (4),

N
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J1(6,6;) = oN E £c1(0,6;)*
=1

E1(8,6:) = Sa(y(6:) +y/'(6:)(8 — 6;)
— G(0)(u(B:) +u'(B:)(6 — 0:)).

Compare (7) with the identification criterion (5).
It looks similar but (7) has two added terms
y'(6;)(8 — 6;) and u'(6;)(6 — 0;) which are local
approximations of how y and u are varying with
respect to changes in the model parameter 6.
Remember, that all the signals y(6;), v'(6;), u(6;)
and u'(6;) are fixed and the free variable is the
0 without subindex. The gradient signals y'(6;)
and u'(#;) are obtained performing closed loop
experiments, since y(6) = Tp(f)r and w(f) =
C(60)So(6)r then

! Cl(ai)

u'(6;) = C'(6:)S5(6:)r.

To(0:)So(0:)r (8)

The approximated criterion (7) could also be com-
pared with the Gauss-Newton search in IFT. In-
troduce §(0) = y(0) —yq = (To(8) — Ty)r, then the
following result, which is proven in (Hjalmarsson
et al., 1994), holds.
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Fig. 1. Comparison of cost functions, solid line -
true cost (4), dotted line - identification cri-
terion (5), dashed line - blended criterion (7),
dash-dotted line - quadratic approximation in
IFT (9). Current model estimate, a; = —0.88.

Lemma 1. Let Z;(0) be a first order Taylor expan-
sion of §(#) around 6;,

Zi(0) = §(0:) + 7'(6:) (6 — 65).

Then the Gauss-Newton update 6;11, with step
length one, is the solution of the minimization
problem

0;y1 = arg main Jan(6)
1 N
Jan(6) = 53 D_ % (0)- 9)
t=1

The difference in (7) from the criterion used in
the Gauss-Newton iterations in IFT is that G(6)
is not linearized, which makes the approximated
criterion (7) more flexible w.r.t. the parameter 6.
This is illustrated in Fig. 1. The model has one
parameter a that is free and the current estimate
is a; = —0.88. Based on this estimate the three
approximated cost functions, (7), (5) and (9) are
compared with the true criterion (4). Here, the
plot of Jy (6, 8;) clearly shows the trade off between
local and global fitting to the true criterion.

3.2 Linearizing Sy

Reconsider (4)

N
76) = 5= S [56)w6) - GOuO)
=1 (10)

1 N 2
= o¥ ;[5(9)0(0)80(0)(00 - GO)r]".

The linearization of the signals y(6) and wu(6)
correspond to linearization of C(8)So(6). Notice
that the controller is completely known but not
So () since it contains the true system Go. Hence,
an alternative to (7) should be to only linearize
So(6). If Sp(0) is linearized in (10) the following
criterion is obtained:
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= 51 (0169 + 16,69

= G(0)(u(8:) +u2(8,6:)))-

The criterion (11) has also the structure of an
identification criterion with the added terms

602(0 91)
+.55(0:)(6 —
(

C'(é’)
3.8 The algorithm
Let
T (6,6;) QNZemoo (13)

denote either (7) or (11), then the following al-
gorithm is proposed which at the ith iteration
becomes

Algorithm 1.

(1) Collect y(6;) and u(6;) in closed loop using
the controller based on the current model
estimate 6;.

(2) Do a second closed loop experiment to com-
pute (8) or (12).

(3) Update the model

Oiy1 = argmoin T (8,65).
(4) Goto to 1.

4. LOCAL CONVERGENCE ANALYSIS

The local convergence of the suggested algorithm
Alg. 1 is studied in this section. The analysis will
be made locally around the true minimum. The
following is a result about the possible conver-
gence points of the proposed algorithm.

Lemma 2. The possible convergence points of
Alg. 1 are stationary points to the cost function
(4), and the value of the approximated cost func-
tion (13) are equal to the true objective function
(4) at those points.

Proof:  Assume that the algorithm converge to
6 = 0 then Mannd

6J ~ —65m(é79)
ZImAY,Y) NZ 0,6)—2"2

y ) ]
- %Z[&( V) _ 9805 - p@ 240,

x [Sa(y(6) —

BJm(0_ 9 _ 08J@)

= =5y~ and it is
J(0). m|

This means that if the method converge, then the
stationary point of Ji,(6,6;) also is a stationary
point to the true design criterion J(¢). This should
be compared with the iterative identification pro-
cedure described in Sec. 2 where, as pointed out,
this is not always the case.

From (4) it follows that
trivial to verify that J,, (0,0)

Introduce the following assumptions:

Al. Assume that the number of data N tends to
infinity.
A2. Let 6* be a stable minimum of (4).

Using assumption A1, (13) and (4) can be rewrit-
ten as Jn(0,0;) = LEen(0,0;)* and J(6) =
%Eatc(é?)z.

The suggested algorithm, Alg. 1 update the
model, in each iteration, according to 6;11 =
argming J,,,(6,0;), which, under convexity as-
sumptions, is equivalent of finding the solution
W 0. Introduce F(0;y1,0;) =

then the question of convergence for the
algorithm turns into a stability problem of the im-
plicit nonlinear autonomous function F'(6;41,6;).
To prove local convergence the following classi-
cal result about stability of nonlinear systems is
needed, see e.g. (Khalil, 1996).

to
8J(8:11,6:)
89,

Theorem §. (stability in the first approximation)
The stationary point §* is an asymptotically sta-
ble equilibrium point of ;11 = f(6;) if all the
eigenvalues of % have magnitude less than one.

From the definition of F(0,~+1, ;) we have that
OF(9*,6*)  82Jn(6%),0"
901 06? '
It can be shown that (14) can be written as

OF(6*,0%) _ 9%J(6*) .
0, o 9(67) (15)

(14)

— Eep(67,6%)7

where ¢(6*) depends on the method. In the
method corresponding to the criterion (7), g is
given as

2 * 2 *
007) = 55729 pg THE)) )
It can also be shown that
) = B, 07)79(6)
90; (17
T (6%,6%)  92J(6*)
- 062 TE

Let 6(-) and o(-) denote the largest and the
smallest singular value, respectively.

Theorem 4. If W is nonsingular then
there exist a neighborhood around #* in which
the algorithm Alg. 1 converge to 6* if



2 Tro* * 2 *
5(3 J(0 07 _ 2 J(g ))

82J(0* 9+) <1
_(T)

Proof: ~ Assumption A2 and Lemma 2 give
F(6*,6*) = 0. The implicit function theorem (c.f.
(Courant, 1954)) states that if F/(6*,6*) = 0 and if
OF (6*,6%)/06;41 is nonsingular, then there exist a
continuously differentiable function f(-) such that
0;+1 = f(0;) in a neighborhood of 6* and the
differential is described by

OF(6,6%)] " OF(6*,6%)
0011 00;
where Af; 1 = 0;41 — 0* and Af; = 0; — 0*. Fur-

thermore from Theorem 3, 8* is a locally asymp-
totically stable point to 6;11 = f(6;) if all the

f01) _ [8F(0*,0*)]_1 BF(0%,6%)
80; -

A0i+1 = — Aa’la ( )

eigenvalues of B0t -

have magnitude less than one. An upper bound of
the maximum eigenvalue is then, see (Horn and
Johnson, 1991)

OF(6*,6%)]1 ' OF(6*,6%)
3 6(81?(89;,9*)) &(a2jé9€*2,a*) _ 82;9(3*))
= _OF(0*,0%)y 2.j(9*,0*
Q( 3(9,'4_1 )) g(a J(gge2’9 ))

O

If 6* is a strict optimum to j(O*,H*), then
82J(0*,0%)
902

obviously is nonsingular. The size of

2 Frp* p* 2 *
g ng;g ) _8 géf ) i apparently important in the

context of convergence. Reconsider (16)

a0 =5, (052 - Pon T )

_ Su(67) |C(67) _,00(67) aC(6*) T Ty(6%)

T Cl) | o2 T 80 88 C(6%)
) A o) ’

X SaC(6%)So(6")(Po — P(6%))r
= MA(0")em(6%,6%).
Then using the definition (17) and Parseval’s
formula,

2J(6*,6%) 0%2J(0*) _

o o = Ben(67,6)7g(0")

1 [" ;
— MA(eJ“’,O*)Qsm (w)dw,
o
(19)
where ®.,_ (w) is the spectrum of the control error

em(0*,0%). Consequently, 82]((999;’9*) - 82;9(2*) is
small if the achievable control performance, repre-
sented by &, (0*, 6*) is small. The same conclusion
is also valid for the method where only Sy (6) was
linearized. The only difference is the matrix M4

which is specific for each method.

5. NUMERICAL EXAMPLES

The aim of this paper has been to try to develop
a method that combines both local and global

information about the cost function in an efficient
way. It is thus of interest to examine how the algo-
rithms behaves when the system to be controlled
is nonlinear but such that it can be controlled by
a linear controller. In such a situation the use
of local information should be crucial for good
performance at the same time as an overall model
would be useful for fast convergence.

The proposed methods in Sec 3 will be illustrated
using two simulation examples. In the control de-
sign direct parameterization of the controller via
the model is considered, i.e. C(f) = ﬁg—‘h
The system to be controlled is the Hammer-
stein system P = Go(z)f(u), where f(u) =
Vul)sign(u) and Go(z) = SST2=E0088 T
model for control will be of order one, i.e.
G(z,0) = - where a and b are the free param-
eters. The difference between the two examples is
the reference model. The first reference model is
Ty = ZO %7838 and the second is Ty = Z001z§75921’
i.e. the bandwidth of the second is twice the
bandwidth of the first. The proposed methods will
be compared with the iterative identification and
control scheme in Sec 2.1 and IFT in Sec 2.2.
The reference signal is two consecutive steps of

amplitude £3, each of duration 250 time instants.

The contour plot of the cost (3) is given as a
function of the model parameters a and b in Fig. 2.
Three iterations are shown for the methods IFT
(ift), iterative identification and control (itidc),
Alg. 1 using (7) (linuy) and Alg. 1 using (11)
(linSo). The optimum is denoted by optim in the
plots. The step response for Alg. 1 in Fig. 3 shows
the initial design (dashed line) and after three
iterations (solid line) compared with the desired
response (dash-dotted line). The experiment is
repeated with Ty = Ty» in Fig. 4-5.

Since the linear version of IFT is used, it will
not converge to the true optimum, but it still
works well, see (Hjalmarsson, 1998). The iterative
identification and control scheme also works quite
well when the performance requirements are low,
but when the bandwidth increases the algorithm
starts to diverge as is seen in Fig. 4-5. This
is a fundamental problem with these methods.
In these examples Alg. 1 and Alg. 2 presents
a similar behavior as IFT, but with a slightly
quicker decrease of the cost, especially in the first
iteration.

6. CONCLUSIONS

In this contribution we have considered the prob-
lem of how to identify a restricted complexity
model that is suitable for control design. We
have proposed an iterative identification algo-
rithm which blends information about the closed
loop sensitivity to the model parameters, i.e. lo-
cal information, together with the usual extrap-
olating property of a model, global system infor-
mation. We have shown that the algorithm has
the same stationary points as the control design
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Fig. 2. Contour plot, Ty = Ty .
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Fig. 4. Contour plot, Ty = Tyo.
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Fig. 5. The step response, Ty = Tya.

criterion. Provided the approximated Hessian of
the cost function is sufficiently accurate, the algo-
rithm has also been shown to converge locally. We
believe that these results, though preliminary, are
of great interest given the sparse hard results for
iterative identification for control schemes based
on restricted complexity models.
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