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Abstract: Two 1-DOF pendulums coupled with a weak spring are considered. This
system is a coupled Controlled Hamiltonian Systems that has been studied widely
in these days. The control objective is to make pendulums swing synchronously with
small input. To this end, Speed Gradient Energy method proposed by Fradkov is
adopted to design the controller. Although experimental results showed that the
method succeeded in achieving the objective, the mechanism of synchronization was
not clear. In this study, the contracted dynamics of the whole system is analyzed
and properties of the system are investigated. Through the investigation, a criteria
to define the feedback gain of the controller is revealed. Computer simulation and
experimental results showed the validity of the method.
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1. INTRODUCTION

Rhythmic phenomena such as oscillation of pen-
dulums, chemical oscillations or circadian rhythm
have attracted much interest for a long time.
When more than two oscillators are interacted
each other, it is known that they may oscillate
in same frequency even if their eigen frequencies
are different. This mechanism is called ‘synchro-
nization’ or ‘entrainment’, and plays very im-
portant role in many applications. For example,
since the period of human’s circadian rhythm
is not exactly as long as that of earth’s rota-
tion, human’s internal clock may shift from the
motion of the sun without any synchronizing
mechanism. Phase Locked Loop circuit(Gardner,
1979) is a widely used application of synchroniza-
tion. Synchronizing chaotic oscillators is applied
to secure communication(Wu and Chua, 1993).
Author(Kumon and Adachi, 1998) also proposed a
path-following control technique for manipulators
based on the concept of synchronization.

In this study, two 1-DOF pendulums coupled
with a weak spring are considered. Only one
of pendulums is actuated to oscillate pendulums
synchronously. Fradkov(Boris and Fradkov, 1999)
succeeded in oscillating linear pendulums with
a controller designed by Speed Gradient Energy
method (Fradkov and Pogromsky, 1998; Frad-
kov, 1999). In the absence of friction, the con-
troller is able to achieve the control objective with
arbitrary small input. Fradkov also considered
energy consumption caused by frictional forces to
design the feedback system. In order to swing the
unactuated pendulum in the existence of frictional
force, energy is required to be transmitted by
the spring attached between pendulums. This fact
leads that states of pendulums do not coincide
rigorously when frictional forces exist. If one of the
pendulums oscillates in slightly different period
than the other, two oscillators may not synchro-
nize. Therefore, further investigation of the sys-
tem is still required. In this paper, the dynamics
of the difference between states, which is called
‘phase shift’, is modeled by phase model which
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Table 1. Parameters

m1,2 l1,2 l0 k

0.3[kg] 0.12[m] 0.02[m] 80[N/m]

was proposed by Kuramoto(Kuramoto, 1984). Re-
lation between the phase shift and frictional forces
is investigated numerically. Using this information
of the phase shift, more precise computation of the
feedback gain can be shown.

The system considered here is a controlled Hamil-
tonian system that has been studied vigorously.
Since Hamiltonian system is a very general form
of mechanical systems, the method shown below
is applicable to large class.

In Section 2, the dynamical model of the system
is shown. In Section 3, the control objectives
are defined and the structure of the controller
is shown. Section 4 is the main result of this
study. Phase model(Kuramoto, 1984) is adopted
in order to compute the contracted dynamics of
the system. Based on phase model, phase shift,
energy of each pendulums and other properties
are analyzed. In order to show the validity of
the result, computer simulation and experimental
results are shown in Section 5. Since the result
of the analysis agrees well with results of the
simulation and experiment, the efficiency of this
study is shown. A brief summary is given in
Section 6.

2. COUPLED OSCILLATORS

Two pendulums coupled by a weak spring which is
considered in this study are shown in Figure 1. A
motor is attached to the left pendulum(pendulum
1) and the joint of the right pendulum(pendulum
2) is passive. The control input generated by
the motor is assumed to be small. Values of all
physical parameters of the system are shown in
Table 1.

The dynamics of the system can be written as
follows:

φ1 φ2

l1

l0

k l2

l0

m2

τ

m1

Fig. 1. Coupled Pendulums

J1φ̈1 + ρ1φ̇1 + m1gl1 sin φ1 = f(φ1, φ2) cos φ1 + τ

J2φ̈2 + ρ2φ̇2 + m2gl2 sin φ2 = −f(φ1, φ2) cos φ2

f(φ1, φ2) = −kl20(sinφ1 − sin φ2), (1)

where J1,2, g and ρ1,2 represent inertia, gravity
coefficient and frictional coefficients respectively.

Total energy of the system, denoted by H[J], is
defined as

H = H1 + H2 + Hk,

where

Hi =
1
2
Jiφ̇i

2
+ migli(1− cos(φi)) (i = 1, 2)

Hk =
kl20
2

(sinφ1 − sin φ2)2.

Hi represents energy of oscillator i(i = 1, 2) and
Hk represents that of the spring. Since the input τ
and the interaction are assumed to be small, mo-
tion of two pendulums can be well approximated
by independent oscillators. This implies that Hi

is a candidate of the constant of motion. In other
words, the above system is a weakly coupled con-
trolled Hamiltonian systems with small input. By
means of energy control, therefore, motions of
oscillators can be controlled.

Although it may be seemed that a very spe-
cial system is considered in this study, controlled
Hamiltonian system is a very common mechanical
system and the discussion below is expected to be
applicable to large class of systems.

3. CONTROL SCHEME

Following Fradkov’s study(Boris and Fradkov,
1999), the control objectives, excitation and syn-
chronization, are modeled. The first objective is
required to make two pendulums swing. Since the
energy H demonstrates the motion of the system,
the system is excited by achieving the following
objective:

(O1) H(t) → H∗ as t →∞,

where H∗ represents the desired energy level.

The second objective is required to synchronize
two pendulums. In this study frequencies of eigen
oscillation are same because physical parameters
of two pendulums are same. Therefore, it is nat-
ural to make angular velocities of pendulums co-
incide in order to synchronize pendulums. To this
end, the second objective is denoted mathemati-
cally as follows:

(O2) φ̇1(t)− φ̇2(t) → 0 as t →∞,

Combining (O1) and (O2), the objective function
Q(t) can be given by



Q(t) = α(H(t)−H∗)2

+(1− α)(φ̇1(t)− φ̇2(t))2, (2)

where α ∈ (0, 1) is a positive constant, and the
objective is to make Q(t) → 0 as t →∞.

Fradkov(Fradkov and Pogromsky, 1998) proposed
Speed Gradient Energy method(SGE method in
short) and applied the method to linear coupled
oscillators with the same control objective(Boris
and Fradkov, 1999). As far as (1)’s nonlinearity is
negligible, his approach is expected to be applica-
ble. Now, the controller is designed by using SGE
method:

τ =−γ
[
α(H(t)−H∗)φ̇1

+(1− α)(φ̇1(t)− φ̇2(t))
]
, (3)

where γ is a small positive constant. When ρ1,2 =
0 and α = 1, H → H∗ can be achieved by any
small input, that is desirable since the actuator
can be small and cheap.

Unfortunately the control goal Q(∞) = 0 cannot
be achieved since some of assumptions(Fradkov
and Pogromsky, 1998; Shiriaev and Fradkov,
1998) to ensure the convergence of Q to 0 is vio-
lated. Although Q can not be converged to 0, the
robustness of the controller keeps Q to be small
enough after enough time passes. But this fact is
not sufficient to ensure synchronization because
the difference between φis may grow large even if
angular velocities φ̇i differ slightly.

However, using this control law, experimental re-
sults showed that controlled synchronization of
the system (1) was succeded. In the following
section, phase model will be adopted in order to
analyze the mechanism of controlled synchroniza-
tion.

4. SYNCHRONIZATION

4.1 Phase Model

Kuramoto(Kuramoto, 1984; Kuramoto, 1991) pro-
posed phase model and studied synchronization of
nonlinear oscillators. He contracted the dynamics
of an oscillator to only one dimensional first or-
der differential equation in order to simplify the
interaction among oscillators.

Recall that frictional forces and interaction are
assumed to be small. Since the energy of the
system converges to some value, oscillator i is
attracted to a circular limit cycle in ωiφi, φ̇i plane,
where ωi represents approximated eigen angular
frequency given by ωi =

√
migli

Ji
. Therfore, only

one variable is needed to denote the state of the

oscillator as far as the state of oscillator is near
the limit cycle. Let θi ∈ S1 be the variable which
is defined as follows:

θi = −Atan2(ωiφi, φ̇i). (4)

Conversely, φi and φ̇i can be approximated as a
function of θi.

φi(θi)≈ ai cos(θi), (5)

φ̇i =±
√

2migli
Ji

{cos(φi(θi))− cos(ai)}
(+: θi ∈ (−π, 0], −: otherwise),

where ai is the amplitude of the oscillation.

Now the dynamics of θi can be computed from the
dynamics of φi.

θ̇i = grad(φi,φ̇i)
θi · d

dt

(
φi

φ̇i

)
(6)

Substituting (1)(3)(5) into (6), the dynamics of θi

can be obtained in the closed form with respect
to θ1,2. Denote this dynamics as follow:

θ̇i = Θi(θi, θj) (i, j = 1, 2 i 6= j). (7)

4.2 Amplitude of Oscillation

Now the amplitude of the oscillation ai is con-
sidered. Because the amplitude of oscillator i is a
function of the energy Hi Hi is studied in order
to compute ai.

Since the oscillation is well approximated as φi ≈
ai cos(ωit) and φ̇i ≈ −aiωi sin(ωit), the period
of the oscillation, denoted by Ti, can be approx-
imated as Ti ≈ 2π

ωi
. The energy dissipated by

frictional forces in one cycle, that is denoted by
Hρi , can be computed as follows:

Hρi =
∮

ρiφ̇idφi =

t0+T∫

t0

ρiφ̇i
2
dt = ρiπωia

2
i . (8)

Next, assume that the difference between θ1 and
θ2 is constant, that is, θ2 = θ1+d, where d ∈ [0, π).
The difference d is called ‘phase shift’ in this
paper. Also assume that a1,2 are small. Then the
following approximation is valid.

sin(φ1) = sin(a1 cos(θ1)) ≈ a1 cos(θ1),

sin(φ2)≈ sin(a2 cos(θ1 + d)) ≈ a2 cos(θ1 + d).

Denote the energy transported from the oscillator
1 to 2 in one oscillating cycle of oscillator 1 as
H12. H12 can be computed as:



H12 =
∮

kl0 {sin(φ1)− sin(φ2))} l0dφ1

= kl20

2π∫

0

{sin(a1 cos(θ1))− sin(a2 cos(θ1 + d))}

× d

dθ1
(a1 cos(θ1))dθ1

=−k0l0a1a2π sin(d). (9)

Since only the force by the spring injects the
energy to the pendulum 2, H12 is required to be
equal to Hρ2 in order to sustain the oscillation of
oscillator 2. By (8) and (9), this requirement leads
the following relation:

a2 =
k0l

2
0 sin(d)
ρ2ω2

a1. (10)

Remark 1. Since the energy transmits only from
pendulum 1 to 2, d is limited to [0, π).

Remark 2. When the pendulum 2 has no friction
i.e. ρ2 = 0, (10) can not be computed. However
both a1 and a2 should be bounded since the
total energy of the system is well controlled. This

implies that
sin(d)

ρ2
must be bounded and that

d = 0 when ρ2 = 0.

Because of frictional forces, H(t) may not con-
verge to H∗ but to another value. Let H ′

∗ be the
value to which H(t) converges and let Hu be the
energy that is injected by the controller in one
oscillating cycle.

Hu =
∮
−αγ(H ′

∗ −H∗)φ̇1dφ

=−αγ(H ′
∗ −H∗)

T+t0∫

t0

a2
1ω

2
1 sin(ω1t)dt

= αγ(H ′
∗ −H∗)a2

1ω
2
1π (11)

The injected energy Hu must be equal to the
consumed energy Hρ1 + Hρ2 in order to sustain
the oscillations . Therefore

αγ∆Ha2
1ω

2
1π =

∑

i=1,2

ρ1πωia
2
i ,

where ∆H = H ′
∗ −H∗. This leads

∆H =
ρ1ω1 + ρ2ω2A

2

αγω1
, (12)

where A = k0l20 sin(d)
ρ2ω2

. Because the interaction is
small, the energy stored by the spring can be
neglected. Then,

H ′
∗ = H −∆H (13)

= m1gl1(1− cos(a1)) + m2gl2(1− cos(a2))

= c1 − g(m1l1 cos(a1) + m2l2 cos(Aa1)),

≈ c1 − g

{
m1l1(1− a2

1

2
) + m2l2(1− (Aa1)2

2
)
}

=
1
2
g(m1l1 + m2l2A

2)a2
1

where c1 = g(m1l1 + m2l2). By (13)

a1 =

√
2(H∗ −∆H)

g(m1l1 + m2l2A2)
, (14)

and a2 is given by (10) and (14).

Remark 3. Since 0 < A <
k0l20
ρ2ω2

, (8) is useful
to tune controller’s parameter γ. If the energy
loss ∆H should be smaller than a given positive
constant δ, then the sufficient condition for γ is
given as follows:

γ ≥
ρ1ω1 +

k2
0l

4
0

ρ2ω2

αδω1
.

4.3 Phase Shift

Although a1,2, A and ∆H are computed as func-
tions of phase shift d, the above discussion can
be validated even when d changes slowly. In order
to study the dynamics of d, the dynamics (7) is
rewritten as

θ̇1 − θ̇2 = Θ1(θ1, θ2)−Θ2(θ2, θ1).

Recalling the definition of d, the above differential
equation can be written as follows:

ḋ = −Θ(θ1, d), (15)

where Θ(θ1, d) ≡ Θ1(θ1, θ1 + d) − Θ2(θ1 + d, θ1).
Since d is assumed to vary slowly, the actual effect
of (15) is investigated by averaging (15) through
one oscillating cycle.

∆d =
−1
2π

∮
Θ(θ1, d)dθ1, (16)

and the amount of phase shift can be obtained
by solving ∆d = 0 with respect to d. However,
the solutions may not be unique. Indeed, Figure
2 shows ∆d vs d when γ = 0.5, α = 0.99,
ρ1,2 = 0.001[Nms] and H∗ = 0.1[J]. There exist
three solutions i.e. d1 ≈ 0.2205, d2 ≈ 2.381 and
d3 ≈ 2.818. In order to select only meaningful
solutions, stability of the solution is considered,
such that the solution can be stable when d∆d < 0
around a solution. Because (16) is a difference
equation, this criteria is not valid in general. In
this case, however, this criteria is still useful since



d varies slowly. Figure 3 shows the solutions when
coefficients of friction varies. Other parameters are
same as in Figure 2. ◦ represents a stable solution
and × represents a solution that is not stable. The
vertical and horizontal axes represent coefficients
ρ1 = ρ2 and d respectively.

The figure shows that amount of the phase shift
also becomes large as frictional forces become
large. This result is rational because of the fol-
lowing fact. When the consumption of H2 by
the frictional force becomes large, the spring is
required to transmit larger amount of energy from
pendulum 1 to 2. Therefore, the spring must be
deformed largely and this implies the increase of
d.

When ρ is small, there exist two stable solutions.
The one is almost in-phase, but the other is anti-
phase. This diagram implies that the first order
transition of d may be observed when ρ is small.

5. SIMULATION AND EXPERIMENT

In order to show the validity of the above result,
a computer simulation was executed. Parameters
of the controller are same in Figure 2. Coefficients
of friction are ρ1,2 = 0.001. Pendulums are stayed
φ1 = 1.0[rad], φ2 = 0[rad] at rest when t = 0.

Figure 4 shows the time response of φ1 and
φ2. The control synchronization is seemed to be
achieved but the figure shows that pendulums
are excited and oscillated synchronously with a
small phase shift. By figure 2 or 3, the phase
shift is estimated to be 0.2205. Figure 5 shows

0 1 2 3−2
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0

1
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d[rad]

∆
d
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Fig. 2. ∆d vs d
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Fig. 3. Solutions of ∆d(d, ρ1, ρ2) = 0
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the time response of d and that the estimation
above is valid. Substituting d = 0.2205 and other
parameters,

A =
80× 0.02 sin(0.2205)

0.001× 9.0416
≈ 0.774,

and

∆H =
0.001× 9.0416 + 0.001× 9.0416×A2

0.99× 0.5× 9.0416
≈ 0.0032.

By (14) and (10),

a1 =

√
2(0.1− 0.0032)

9.81(0.3× 0.12 + 0.3× 0.12A2)
≈ 0.5854

a2 = Aa1 ≈ 0.4531

Amplitudes of oscillations are well estimated(Figure
4). Since H ′

∗ = H∗ −∆H,

H ′
∗ ≈ 0.1− 0.0032 = 0.0968.

Figure 6 shows the time response of the energy
H[J] and validates the result of the analysis.
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Fig. 5. ∆d vs t
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Table 2. Parameters

m1,2 l1,2 l0
0.302[kg] 0.150[m] 0.0200[m]

k ρ1 J1

119[N/m] 0.0130[Ns/m] 0.00706[kgm2]

J2 γ α

0.00680[kgm2] 0.9 0.999

A simple experimental device is shown in Figure 7.
Parameters of the system and those of controller
are shown in Table 2. Figure 8 shows the result
of stability analysis and experimental result. ∇
shows experimental data. The figure shows that
experimental results agree well with theoretical
results when ρ2 is smaller than 0.01. Since it is
difficult to measure frictional coefficients precisely
when ρ2 is large, experimental values slightly
differ from theoretical results when ρ2 is larger
than 0.01.

Encoder

Spring

Pendulum1 Pendulum2

Controller

Fig. 7. Experimental Setup
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Fig. 8. Experiment result

6. CONCLUSION

Two 1-DOF pendulums coupled with a weak
spring are controlled by SGE controller in order

to make these pendulums oscillate synchronously.
In this study, the mechanism of synchronization
is studied by using Kuramoto’s phase model and
following results are revealed.

• Although the system is nonlinear and there
exist frictional forces, the control objective
can be achieved.

• Although the objective function is designed
in order to make the angular velocities of
pendulums same, it can not be achieved.
Synchronization is achieved with phase shift.

• Taking the consumption by the friction into
account, the total energy, phase shift and
amplitudes of oscillations are well estimated.

• A sufficient condition of the parameter of the
controller, γ, is shown.

Results of computer simulation and experiments
show that all quantities estimated by the analysis
are well estimated and that the analysis is valid.

Although, Figure 3 implies that there exists more
than one stable phase shift, it was not easy to
make the system synchronize at almost anti-phase
oscillation. Since only the stability of the averaged
phase shift is considered, the basin of the entrain-
ment is needed to be studied in order to find a
realizable anti-phase oscillation.
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