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Abstract: The modeling and optimization of a dehydrogenation reactor in the 
industrial styrene monomer plant has been proposed in this study. Because this 
reactor consumes large amount of expensive high-pressure steam to produce the 
styrene monomer (usually more than two third of total energy costs), the 
minimization of the operating cost is highly desirable to maximize the profit. 
However, it is not easy to develop the accurate mathematical model because of the 
lack of internal or intermediate measurements of the industrial reactor, and also the 
lack of experimental results of the catalyst deactivation. To overcome these 
difficulties, we propose an alternative model of the styrene monomer reactor using a 
hybrid model in which the mathematical model is combined with neural networks. 
Major reaction mechanism is described in the mathematical model, and the 
deactivation effect is modelled in neural network using the real operation data. 
Using this model, the sensitivity analysis and the optimization of the industrial plant 
have been performed. The proposed optimal operation enlarges the profit of the 
plant very much. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
Most of the industrial styrene monomer plants carry 
out the adiabatic dehydrogenation reaction in the 
multiple reactors in series. Even though these 
adiabatic reactors need more expensive equipment 
cost and operating cost, they have been used in many 
companies because of their high conversion of 
ethylbenzene and the small usage of catalyst pellets 
(Lim, et al., 2001b; Wett, 1981). 
The optimization of a styrene monomer(SM) reactor 
is highly valuable because it can be used in 
optimizing the current operation, which has high cost 
due to the large amount of expensive high-pressure 
steam (Haung, 1983). But, only a few researchers 
had studied about industrial styrene monomer 
reactors because they have difficult geometries and 
unknown reaction mechanisms (Sundaram, et al., 
1991). There had been many efforts to improve the 
productivity of styrene monomer production plants. 
But most of them had been focused on improvement 
of the recovery section or the other equipments 
except the reactor and development of new 
dehydrogenation catalyst (Cavani and Trifiro, 1995). 
Reaction models had been formulated (Clough and 
Ramirez, 1976; Scheel and Crowe, 1969; Hirano, 

1986) and characteristics of the styrene monomer 
plug-flow reactor had been studied (Scheel and 
Crowe, 1969; Abdalla, et al., 1976). Only Savoretti 
(Savoretti, et al., 1999) proposed the non-adiabatic 
radial-flow reactor model. Through these researches, 
it had been possible to represent the styrene 
monomer reactor mathematically. 
Although the mathematical model of the radial flow 
reactor gave a reasonable prediction from the 
industrial point of view (Lim, et al., 2000), the nature 
of the process presented some difficulties in the 
prediction of catalyst activity. The lack of internal or 
intermediate measurements of the reactor represented 
a limitation for the detailed model validation. In 
addition, the lack of experiments of catalyst activity 
represented the uncertainty of parameters in 
mathematical equations. Thus the mathematical 
model was not enough to represent changes of 
catalyst activities. 
In this study, alternative models of the styrene 
monomer reactor have been proposed using a hybrid 
model in which the mathematical model is combined 
with neural networks. The mathematical kinetic 
model for an adiabatic radial-flow styrene monomer 
reactor has been used as a first principle model. A 
neural network model has been developed for the 
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catalyst deactivation model because the exact 
parameters for the deactivation could not be 
measured and the deactivation was observed by the 
plant data only. Using this model, the simulation and 
optimization have been performed. Some examples 
have been tested with this simulator and the potential 
usages of this program have been investigated. 
 
 

2. SYSTEM DESCRIPTION 
 
 
2.1 Reactor System: characteristics 
 
 

 
 
Fig. 1. Reactor configuration of current adiabatic 

radial flow reactor 
 

 
Fig. 2. Simplified reactor model and cross-sectional 

configuration 
 
This styrene monomer plant has two ethylbenzene 
dehydrogenation reactors in series as shown in Fig. 1. 
Between two reactors, there is a heat exchanger. In 
this heat exchanger, the product stream from the first 
reactor is reheated up to 630℃. 
The conversion of ethylbenzene (EB) and the 
selectivity of ethylbenzene to styrene are affected by 
reactor operating pressure, temperature, molar steam-
to-hydrocarbon ratio (S/O ratio), and reactor load 
(=[current ethylbenzene flow rate] / [design 
ethylbenzene flow rate]). 
The desired reaction can be enhanced at the low 
operating pressure because the main reaction of 
styrene monomer production increses the number of 
moles. The hydrocarbon feed to the reactor is the 
mixture of fresh ethylbenzene and recycled 
unconverted ethylbenzene. Prior to entering the 

reactor, this hydrocarbon feed is mixed with 
superheated steam in the adiabatic radial flow reactor. 
This steam acts not only as a heating medium but 
also as a diluent. High S/O ratio and low operating 
pressure increase the molar conversion of 
ethylbenzene. Molar conversion of ethylbenzene is 
also a function of temperature; higher temperature 
yields higher conversions in nearly a linear function. 
Therefore, an increment in conversion can be 
obtained by increasing the reactor temperature. Since 
the reaction of ethylbenzene to styrene is 
endothermic, it is carried out in multiple adiabatic 
radial bed reactors filled with catalysts. As for load, 
molar conversion of ethylbenzene is an inverse 
function of this parameter since higher velocity 
means lower residence time. This in turn reduces 
molar conversion (Kirk, et al., 1983). 
 
 
2.2 Reaction Mechanism 
 
In the styrene monomer reactor, three major 
competing reactions are known (Scheel and Crowe, 
1969): reactions (1), (2), and (3). Styrene is produced 
by dehydrogenation of ethylbenzene. These reactions 
are endothermic except (3). 
 

22563256 HCHCHHCCHCHHC +↔  (1) 

42663256 HCHCCHCHHC +→   (2) 

435623256 CHCHHCHCHCHHC +→+  (3) 
 
In addition to these, there are three side reactions by 
thermal cracking at higher temperature. 
 

2422 2
2
1 HCOHCOH +→+  (4) 

242 3HCOCHOH +→+   (5) 

222 HCOCOOH +→+   (6) 
 
Since the dehydrogenation of ethylbenzene is a 
reversible endothermic reaction, high styrene yield is 
favored by high temperature. 
 
 

3. MODEL DESCRIPTION 
 
 
3.1 First Principle Model: mathematical model 
 
Reaction model: The kinetic model for the reactions 
is shown in Table 1. 
 
Governing equations: The adiabatic radial flow 
reactor is simplified using the following five 
assumptions. 
 
(1) Quasi-steady state operation 
(2) Ideal gas mixture: this assumption is valid 
because the styrene monomer reactor is operated at 
high temperature and low-pressure condition. 
(3) Uniform distribution: the parabolic deflector 
inside of the plant makes the uniform flow pattern. 
(4) No pressure drop and mass or heat diffusion in 
the axial direction: only the pressure drop exists 
inside of catalyst bed in the radial direction. 
(5) No reaction except catalyst bed 



     

According to the previous assumptions, the shell 
mass balance (15), energy balance (16), pressure 
drop (17) equations in cylindrical coordinates are 
following. 
 

Table 1 Reaction Model 
 

Reaction amounts in reaction j,
jf  

)/( 211 PHSTEB KPPPkf −=  (7) 

EBPkf 22 =   (8) 

233 HEBPPkf =   (9) 
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3.2 Neural Network Model 
 
The neural network model consists of a set of 
processing units called neurons, connected to one 
another. The neural network in this study is a feed-
forward network with one hidden layer, seven input 
variables and one output variable. By adjusting 
parameters in the coupling, between neurons, the 
network is capable of learning from a set of 
numerical data corresponding to the input and 
desired output. (Nascimento, et al., 1999) 
Because of the time-varying characteristics of 
catalyst activity, the recurrent neural network is used 
in this hybrid model. 
 
As the input variables are, 

(1) temperature (T(k-1)); 
(2) pressure (P(k-1)), 
(3) partial pressure of steam in feed (PSTM(k-1)); 
(4) feed flowrate of EB (FEB(k-1)); 
(5) deactivation factor at time point k-1 (Φ(k-1)). 

 
As the output variable is 

(1) deactivation factor at time point k (Φ(k)) 
 

 
Fig. 3. Neural network model 
 
A set of data obtained in the industrial unit was used 
to train the neural network and the other set to check 
the trained neural network. As shown in Fig 4, using 
the difference of two values, calculated real factor 
(Φ0) for target value and predicted factor (Φ) for 
output value, neural network model can be trained. 
Because desired output, Φ0 is not measured in plant, 
Φ0 is calculated from governing equation and real 
plant data. 

 
Fig. 4. Schematic diagram of learning method 
 
Figs 5 and 6 show the calculated (Φ0) versus 
predicted deactivation factor (Φ) for the learning and 
test set. The achieved agreement is within the error 
range, 10%. 
 

 
Fig. 5. Calculated vs. predicted factors of reactor 1 
 



     

 
Fig. 6. Calculated vs. predicted factors of reactor 2 
 
 
3.3 Hybrid Model 
 
After training, the proposed neural network model 
supplies the catalyst deactivation factor (Φ) at any 
operating conditions. Mass balance, energy balance 
and pressure drop equations can be solved using 
given plant data. From these equations, reactor 
output data, such as temperature and composition of 
the output flow of each reactor, can be obtained. 
The structure of the hybrid model, in which the 
mathematical model and the neural network model 
are coupled, is presented in Fig 7. 
 

 
Fig. 7. Schematic diagram of hybrid model 

 
 

4. Examples 
 
 
4.1 Hybrid Model Test 
 
The proposed hybrid model is well fitted with the 
real plant data. Fig. 8 compares the real plant data 
with simulation results using predicted catalyst 
deactivation factor (Φ). These figures show the 
performance of styrene monomer and ethylbenzene 
that are the main materials of this process. The 
simulation results show good performance of 0.4% 
relative error, compare with 1.7% relative error of 
mathematical model (Lim 2001a).  
 

 

 
Fig 8. Comparison of simulation data and real plant 
data of reactors: a) reactor1, b) reactor2 
 
4.2 Sensitivity Analysis for S/O ratio Change 
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Fig. 9. Selectivity for S/O ratio change 
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Fig. 10. Conversion for S/O ratio change 
 
To see the simulation of the styrene monomer reactor, 
one of the operating variables is simulated. The input 
conditions are based on industrial data. Fig 9 shows 
the simulation results with changing S/O ratio and 
DOS (days on stream). According to the figure, the 
conversion of early DOS is similar. But, increasing 
DOS, higher S/O ratio condition shows higher 
conversion of styrene monomer from ethylbenzene 
and lower catalyst deactivation effect. 



     

 
 
4.3 Optimization for Operating Conditions 
 
The operating conditions are optimized using given 
boundaries. The objective function, given conditions 
and the results are shown in Table 2. This 
optimization result shows that higher S/O ratio, load, 
temperature, and pressure increase the conversion of 
ethylbenzene to styrene monomer and the production 
rate of styrene monomer. 
 

Table 2 Calculated and specified values for 
constraints and objective function 

Calculated Constraint Current 
operation Starting Optimum

S/O ratio 
Load (%) 
Reactor 1 inlet 
temperature (℃) 
Reactor 2 inlet 
temperature (℃) 
Reactor 2 outlet 
pressure (mmHg) 
 
Profit 

1.5 
120.0 
620.4 

 
620.2 

 
-400.0 

 
 

54.0 

1.5 
100.0  
630.0  

 
630.0 

 
-421.5 

 
 

38.8 

2.0 
150.0 
620.0 

 
620.0 

 
-400.0 

 
 

79.3 
Constraint range 

Operating variable Min Max 
S/O ratio 
Load (%) 
Reactor1 inlet temperature (℃) 
Reactor2 inlet temperature (℃) 
Reactor2 outlet pressure (mmHg) 

1.0
100.0
620.0
620.0

-450.0

2.0
150.0
650.0
650.0

-400.0
Objective function: 

F = SMSALE – EBVALUE – CATVALUE + 
TLSALE – STEAMVALUE 

 
SMSALE [$/day]=(SM price [$/ton])*(outlet SM 
flowrate [ton/day]) 
EBVALUE [$/day]=(EB price [$/ton])*((total EB 
inlet flow rate [ton/day])-(recycled EB flowrate 
[ton/day]))+(EB recycle price [$/ton])*(recycled EB 
flowrate [ton/day]) 
CATVALUE=(catalyst price [$/day])*W1 
TLSALE=(TL price [$/ton])*(outlet TL flowrate 
[ton/day]) 
STEAMVALUE=(steam price [$/day])*(inlet stream 
flowrate)*W2 
 
(W1 & W2: scalar weight) 
 
 

5. CONCLUSIONS 
 
In this study, the styrene monomer production 
process in an adiabatic redial flow reactor has been 
successfully modeled. This model has been 
developed via hybrid model in which the 
mathematical model and neural network models are 
combined. Also the performances of the developed 
model have been presented. 
The mathematical model can reinforce the 
insufficient performance owing to lack of data that is 
not enough to use neural network models. And 
neural network model can give more accurate 
catalyst deactivation factor than one that a 
mathematical model can give. Although neural 

networks are not difficult to use, process variables 
should be known, and the quality of data is crucial to 
obtain reasonable results.  
Using this model, determining optimal operating 
conditions and testing new operating conditions are 
performed easily. On the situation of changing 
catalyst, this simulator shows good performance 
because the catalyst parameters are updated using 
current process data. 
 

6. ACKNOWLEDGEMENT 
 
This work was partially supported by the Brain 
Korea 21 project. Funding and all plant information 
were provided by LG Chemicals co. 
 
 
 
 

NOMENCLATURE 
 
BZ  Benzene 

pC  Heat capacity of gas flow [kJ/(kg K)] 

EB  Ethylbenzene 
ET  Ethane 

ig  Mass fraction of component i [kg/kg] 

if  Reaction rate of component i  [kmol/(m3 s)] 

jf  Reaction rate of reaction j  [kmol/(m3 s)] 

F  Total mass flow rate [kg/s] 
2H  Hydrogen 

OH 2  Water (steam) 
jH∆  Enthalpy of reaction j  [kJ/kmol] 

i  Component 
j  Reaction 

ik   Rate constant of component i  

0ik    Reference rate constant of component i  
 10k , 20k  [Kmol/(kg s kPa)];  
 30k , 40k , 50k [Kmol/(kg s kPa2)];  
 60k  [Kmol/(kg s kPa3)]) 

pK     Equilibrium constant of main reaction [kPa] 

m  Number of reaction 
ME  Methane 

iMW  Molecular weight of component i [kg/kmol] 
NC  Number of component 
P  Pressure  [kPa] 

iP  Partial pressure of component i  

inP  Inlet pressure [kPa] 

outP  Outlet pressure [kPa] 
r  Radial direction [m] 
R  Gas constant [kPa  m3/(mol K)] 
SM  Styrene monomer 
t  Time [day] 
T  Temperature [K] 
TL  Toluene 
Φ  Catalyst deactivation factor 



     

ijν  Reaction stoichiometric coefficient of 

component i  in reaction j  
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