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Abstract: The paper focuses on the enhancement of automatic robot programming
techniques for laser cutting application. Its particular contribution lies in the area of
multiobjective optimization of robot motions via graph representation of the search
space and the dynamic programming procedures. It have been developed algorithms
that allow to generate smooth manipulator trajectories within acceptable time, simulta-
neously considering kinematic, collision and singularities constraints of the robotic
system, as well as the limitations of the robot controller. The efficiency of the algo-
rithms has been carefully investigated via computer simulation and verified for real-life
applications in automotive industry. Copyright © 2002 IFAC
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1. INTRODUCTION

In last decades, laser machining has gained essential
industrial acceptance as an alternative to mechanical
processing. It has significant advantages over tradi-
tional production methods due to its high process
quality combined with high speed, high precision
and potential flexibility (Geiger and Otto, 2000).
However, the manual teaching of robotic laser sys-
tems is a very tedious and time-consuming. In con-
trast to them, the off-line programming allows gener-
ating the control code by means of computer graph-
ics and away from the factory floor. As the result, the
down time for which a robot is out of production
may be reduced by 80÷85%, enabling very small
batch sizes to become economic.

At the moment, there are a number of robot off-line
programming systems on the market. Some of the
most common of them are RobCAD (Tecnomatix
Technologies ), IGRIP (Deneb Robotics), CimSta-
tion (Silma) and Workspace (Robot Simulations).

They implement a number of sophisticated path-
planning methods, however there still exists a con-
siderable gap between their capabilities and require-
ments of a particular technology. And up to now, the
robot programs for some cutting applications are
constructed interactively.

For laser cutting applications, the main contribution
in off-line programming has been done by M.Geiger
and his co-workers (University of Erlangen-
Nuremberg, Germany). However, the proposed tech-
niques may be applied only to non-redundant kine-
matic structures, which are based on five-axis robots.
This paper focuses on enhancement of the 3D off-
line programming techniques for six-axis robots,
which possess inherent redundancy with respect to
the cutting. In contrast to the known methods, the
proposed approach takes into account this redun-
dancy in combination with kinematic, collision and
singularities constraints of the robotic system, as
well as limitations of industrial control units. It relies
on simultaneous optimization of multiple criteria and
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allows generating smooth manipulator trajectories
within acceptable for industrial application time.

2. PROBLEM STATEMENT

2.1. General Optimization Problem

Let us assume that input data for the motion planning
system are presented by two vector functions
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where t is a scalar argument (time); p(t)∈ R3 defines
(x,y,z)-coordinated of the tool tip, and n(t)∈ R3 is the
unit vector of the tool axis orientation, which must
be normal to the processing surface (Fig. 1). To de-
scribe spatial location of the robotic tool, let us in-
troduce another unit vector a(t) which is tangent to
the workpiece surface and points the tool motion
direction. Assuming that the vectors a(t) and n(t) are
mutually orthogonal, an each point of the processing
contour may be associated with the coordinate frame
which X-axis is directed along the path, Z-axis is
directed along the cutting tool, and Y-axis completes
them to the right hand oriented triple.

The corresponding matrix of homogenous transfor-
mation H(t) can be used for defining complete pose
of the robotic tool, which requires 6 independent
parameters (3 Cartesian coordinates and 3 Euler
angles). However, for the cutting technology, five
parameters are sufficient because the tool axially
symmetry. Hence, the cutting tool locations L can be
defined accurate to rotation around the vector n
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where γ∈ (-π;π] is the rotation angle and Rn(γ) is the
corresponding 3×3 orthogonal rotation matrix around
the vector n.

Therefore, the robotic task description includes one
undetermined parameter γ (i.e. one redundant degree
of freedom) that can be used for optimization pur-
poses. Indeed, the technological tool can be rotated
around the laser beam axis without any influence on
the quality of processing, provided that this motion
does not contradict to robot kinematic and collision
constraints. The latter are defined by binary func-
tions Ψk(L) and Ψc (L) which non-zero values corre-
spond to the constraint violation. In addition, to in-
sure singularity-free motion of the manipulator, let
us define another binary function Ψs(L) which zero
value defines admissible distance to singularities.
(Yoshikawa, 1985). So, the considered problem of
the robot motion planing can be stated as follows:
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Fig. 1. Defining task frames

Design Problem. For given manipulator task de-
scribed by parameterized homogenous matrix-
function L(t,γ), t∈ [0;T],  find a scalar function
γ(t)∈ (-π;π] which defines continuos sequence of
feasible tool locations L(t,γ(t)) and minimizes given
performance measure
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subject to kinematic, collision and singularities con-
straints
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Geometrical interpretation of this problem may be
presented as searching for the best path in the plane
that avoids prohibited regions indicating constraint
violations. It should be noted however that in spite of
the apparent similarity with mobile robot path plan-
ning (Latombe, 1991), the considered problem es-
sentially differs by objective functions.

2.2. Performance Measures

For typical industrial robot, which possesses six
degrees of freedom, the mapping from the task space
{L} to the joint variable space {Q} is described by
the inverse kinematic function

( )M,InvKin LQ = , (4)

which is parameterized by the configuration index M
that allows to resolve a non-uniqueness problem.
Therefore, the mapping from the task space to the
joint variable space defines several self-motion
manifolds

( ) ( )[ ] [ ]T,tM,,tInvKinM,,t 0; ∈= γγ LQ , (5)

that must be considered separately during optimiza-
tion. In addition, let us define the similar mapping



Fig. 2. Smooth control of the tool orientation

for the tool orientation angles

( ) ( )[ ] [ ]T,tM,,tToolAngM,,t 0; ∈= γγ LΦ , (6)

which particular meaning depend on a convention
adopted by a robot manufacturer. For similarity, the
orientation angles are denoted as ϕ1, ϕ2, ϕ3.

Thus, for given M, the function γ(t) defines six joint
trajectories qk(t) each of which may be evaluated by
the following cost functionals:

•  Joint coordinate range
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•  Joint coordinate deviation
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•  Joint coordinate displacement
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•  Joint maximum speed
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It is obvious that mapping from the task space to the
tool orientation space, which yields three trajectories
ϕ1(t),…ϕ3(t) may be also evaluated applying  the
same performance measures: tool angle range, de-
viation, displacement, and maximum speed.

Geometrical meaning of these functionals is the
following. The range evaluates width of the smallest
tube that contains the corresponding function. The
deviation shows the bias of this tube relative to the
prescribed value. The displacement characterizes the
total amount of joint motions (without regards to the

motion direction). And, finally, the maximum speed
estimates function smoothness.

2.3. Optimizing multiple objectives

As follows from the previous Section, it not possible
to describe completely the considered design re-
quirements by a single objective. Though in ideal
(and obviously “utopian”) case all of the introduced
objectives tend to zero, minimizing one of the com-
ponent may degrade performance in another. So, the
designer must choose one of the techniques that are
usually used to balance multiple criteria (Steuer,
1986; Pamanes and Zeghloul, 1991).

In this paper, instead of giving preference to a par-
ticular objective or optimization technique, it is pro-
posed to leave the final decision for the design stage.
It may be chosen from the following options: (i)
defining priority of partial objectives or the primary
objective; (ii) applying minimax technique, i.e. the
worst-case optimization; (iii) assigning weights to
combine multiple criteria in linear function. Inde-
pendent of the chosen technique, the vector-
optimization engine must include scalar-optimization
routines that are developed in the following Sections.

3. SEARCH SPACE REPRESENTATION

Let us transform the search space into a directed
graph. For the considered problem, the given path
may be described by an evenly distributed sequence
of nodes {pi, ni} with equal sampling step ∆S. Simi-
larly, the interval of the redundant parameter γ∈ (-
π,π] may be divided in m segments. So, after extrac-
tion of only those locations L[t,γ(t)] that satisfy the
kinematic, collision and singularities constraints,
each node of the path (1) can be mapped into a set of
tool locations and corresponding joint coordinates
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Therefore, the feasible search space can be repre-
sented by a multi-layer directed graph (Fig. 3) with
vertexes { }ijV L= and edges ( ){ }1−== ki,E klij LL .
And the robotic path-planing task is reduced to the
following network optimization problem.

Transformed Design Problem. For given set of
vertexes V and set of edges E, find the “best” path of
length n

( )
nnjjjn,... LLL �→→=Π

21 100 γγ (12)

with initial state V0∈ {L0j} and final state V0∈ {Lnj},
which minimizes the specified performance index.



Fig. 3. Graph representation of the search space

It should be stressed that in this formulation both the
initial and final states are not unique, but the problem
can be transformed to the classical one by adding
virtual start and end nodes (common for all layers).

4. GENERATION OF OPTIMAL PATH

Since the considered performance measures differ by
their properties (additive, non-additive, etc.), the
optimization technique should be also different. In
this section, there are proposed several algorithms
that minimize the performance measures (7)-(10) in
acceptable time. To simplify description of the algo-
rithms, the joint coordinates corresponding to the
location Lij are denoted as qk(i,j), and the trajectories
corresponding to the solution vector Γ are denoted as
qk(i,jγi). The algorithms are equally applicable for
optimization in both the joint variable space q and
the tool orientation space ϕϕϕϕ, while the description
below is given for the first case only.

4.1. Minimization of coordinate deviation

The optimization problem
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that minimizes deviation of the k-th joint variable
with respect to the prescribed value rk may be solved
in a straightforward way, by selecting for each time
instant ti the value of γ∈Γ i that yields local minimum
of the difference. It is obvious that such solution also
ensures global optimum, though in general case it is
not unique. However, using proposed multiobjective
approach, the detected “critical nodes”
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may be converted into constraints, which are taken
into account on the next steps, while applying other
optimization criteria. Within the proposed formula-
tion, such transformation is performed by simple
reduction of the set Γi up to a single element γjo.

4.2. Minimization of coordinate range

The optimization problem

( ) ( ) ( )[ ] ( )[ ]
Γ∆ →−=Γ minj,iqminj,iqmaxJ

ik
i

ik
i

k
γγ ,(15)

may be solved by simultaneous application of the
previous algorithm and non-linear optimization tech-
nique. The problem can be reduced to seeking for the
best-prescribed value rk that yields minimum of the
corresponding deviation:

( ) ( ) ( )
kr

kk
jik

k .minrj,iqminmaxrf →






 −= (16)

In this case, the value rk is treated as the middle of
the coordinate range, so the optimal solution rk

o gives
two “critical nodes” that correspond to the upper and
the lower levels respectively. Similar to the previous
case, the optimal solution is not unique, so the criti-
cal nodes may be also converted into constraints for
the next optimization steps.

It should be stressed that because of non-smooth and
poly-modal nature of the objective function, conven-
tional nonlinear optimization methods (step descent
or gradient search, for instance) can not be used here.
Alternative approach is based on sophisticated ran-
dom search techniques, simulating annealing in
particular.

4.3. Minimization of coordinate increment

For the discrete representation of the search space,
the coordinate velocity is estimated by the finite
difference computed for the successive time instants.
So, the related optimization problem is stated as
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and can be solved by means of the dynamic pro-
gramming. To prove it, let us assume that at the p-th
stage there have been found all optimal sequences

( ) χγγγχ ,p...,,,,p 110
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χ∈Γ p and the corresponding performance measures
are denoted as Fp(γ). Then, for the next stage, the
sequence ( ) γχγγγ ,,...,,,p p 10

o 1 −=+Γ  with the

last element γ∈Γ p+1 may be found from the following
recursion
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Therefore, staring from p=1 and sequentially in-
creasing length of the sequence, for each “end state”
there can be find both the optimal path and the corre-
sponding value of the performance measure. It is
obvious that a similar approach can be also applied



to minimization of the weighted sum and the “worst”
component of the corresponding vector performance
measure.

4.4. Minimization of coordinate displacement

Using discrete search space, this optimization prob-
lem is stated as follows:
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In contrast to the previous case, it is an additive per-
formance measure that is accumulated along the
path. Therefore, it can be also minimized applying
the dynamic programming. Using the notation
adopted in the previous Section, the corresponding
recursion can be written as
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So, sequentially increasing length of the sequence
Γo(p,γ), for each “end state” there can be find both
the optimal path and the corresponding performance
measure. As in the previous case, the last step deals
with the selection of the best “end state” from the set
γ∈Γ n.. It can be easily proved that a similar recursion
also yields an optimal solution for the weighted sum
and the “worst” component of the corresponding
vector performance measure.

5. SIMULATION RESULTS

To demonstrate the proposed technique, let us con-
sider a three-link RRR planar manipulator with the
parameters l1=1.0, l2=1.0 and l3=0.25. The cutting
contour is defined as a square with the side d=0.8,
which angles are rounded with the radius r=0.10.
The center of the contour is located at the point
(1.0, 1,0) and is surrounded by an obstacle with the
gap ∆d=0.05. After the sampling, the contour is
presented as a set of 60 uniformly distributed nodes.
Using the inverse model and altering the tool orien-
tation ϕ with the step of 10o, it has been generated a
set of 1385 feasible tool locations {Lij} and corre-
sponding set of joint coordinates {Qij}.

To investigate relative importance of the considered
performance measures, firstly there were found op-
timal solutions for a single objective applied to a
single coordinate q1, q2 or q3 (see Tables 1 – 3). As
follows from the results, the minimization of Js (joint
displacement) yields result that is also satisfactory
for other objectives, so it may be chosen as the pri-
mary performance measure to present the engineer-
ing requirement of a “smooth” trajectory. However,
further analysis shows that minimizing Js for one
joint may lead to very sharp profile for the remaining
ones, especially for the third joint. Therefore, the

competing objectives must be balanced by comput-
ing the weighted sum or the “worst” component of
the vector criteria.

The simultaneous optimization of all joint trajecto-
ries shows that the weighted sum approach, as well
as the “worst case” minimization, yield roughly the
same results, which are also close to the result for
minimization of Js(3). Therefore, in this particular
case, the third joint may be considered as a “key”
one and such solution may be chosen as the output of
the multiobjective optimization process.

Table 1 Performance measures for optimization of q1

Objective ( )1
∆J ( )1

vJ ( )1
sJ

Minimum of range ( )1
∆J 19.09 2.69 56.56

Minimum of increment ( )1
vJ 32.9 1.47 42.79

Minimum of displacement ( )1
sJ 19.09 1.47 27.70

Table 2 Performance measures for optimization of q2

Objective ( )2
∆J ( )2

vJ ( )2
sJ

Minimum of range ( )2
∆J 41.32 3.31 98.78

Minimum of increment ( )2
vJ 50.72 2.54 69.24

Minimum of displacement ( )2
sJ 49.76 3.19 62.92

Table 3 Performance measures for optimization of q3

Objective ( )3
∆J ( )3

vJ ( )3
sJ

Minimum of range ( )3
∆J 11.50 10.69 161.8

Minimum of increment ( )3
vJ 52.26 3.84 105.0

Minimum of displacement ( )3
sJ 52.26 3.84 105.0

7. INDUSTRIAL IMPLEMENTATION

The algorithms developed here have been success-
fully implemented on the manufacturing floor, in
ROBOMAX CAD package. It is already used in
Russian automotive industry and has been success-
fully applied for design of manufacturing lines/cells
for LADA cars, GAZEL lorries and ZIL mini-vans.

In application to the laser cutting technology, the
Robomax/Laser (Fig. 4) allows to design the work-
cell layout and optimize robot motion using mul-
tiobjective optimization techniques. The main design



procedure consists of three iteratively repeated steps.
The first step is the selection of the proper manufac-
turing environment and locating them within the
robot workspace. The second step deals with path
planning using algorithms described in this paper.
And at the third step, the obtained solution is verified
using realistic simulation of the manufacturing envi-
ronment. Recent application of the package is the
off-line programming of a robotic cutting station for
AMO ZIL (Moscow), which includes KUKA PR161
robot and corresponding positioning and clamping
devices. It is used for a small-batch manufacturing,
which requires frequent reprogramming.

SUMMARY

The developed technique allows generating optimal
movements of robotic manipulators in 3D space
taking into account its kinematic redundancy and
particularities of the laser cutting technology. Incor-
porating these results in graphic simulation system
leads to essential reduction of process planning time,
enabling even very small batch sizes to become eco-
nomic for the robotic processing.

Particular contribution of this paper deals with the
multiobjective optimization of robot motions that is
based on simultaneous optimization of performance
measures for all joint coordinates. To generate
smooth motion, each joint trajectory is evaluated by
a set of performance indices such as the coordinate
range, the deviation, the maximum increment, and
the total displacement. The search space is converted
into a directed graph and the problem is re-
formulated in terms of the combinatorial optimiza-
tion theory. The optimal solution is obtained via the
dynamic programming procedures that minimize

weighted sum of the objectives (or the “worst” of
them) and yield result within acceptable for indus-
trial application time. During optimization, the
weights are altered to generate a set of Pareto-
optimal solutions.
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