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Abstract: The loop shaping scheme is applied to H∞-control of time-varying and
periodic systems. The solution is given in a unified mixed continuous/discrete-time
compact form. This implies that pure continuous-time and discrete-time applications
simply appear as two different interpretations of the given results. Among the
applications are also hybrid systems with time-driven discrete events. For periodic
continuous-time systems, a lifted (or discretised) system model is used to catch the
behaviour during the period. The results can be considered as a generalisation of the
Glover-McFarlane loop shaping procedure.
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1. INTRODUCTION

H∞-design is by now well investigated, see e.g.
the classical book (Green and Limebeer 1995)
where, as is mostly the case, the continuous-time
and discrete-time solutions are presented one at
a time. A general and unified H∞-design frame-
work that applies to mixed continuous/discrete-
time systems was presented in (Christiansson et
al. 1999) and (Christiansson et al. 2000) as a
generalisation of many known works, e.g. (Green
and Limebeer 1995, Zhou et al. 1996, Ravi et
al. 1991). This paper shows how the unified frame-
work easily is adopted to the loop shaping scheme.

The loop shaping design procedure for H∞-design
presented in (McFarlane and Glover 1992) is
nowadays widely adopted. One great advantage is
that there is no need for the so called γ-iteration.
The reason for this is the simple system setup that
is obtained when weight functions are placed in
the loop, as opposed to the general scheme, where
weight functions can be placed anywhere. Loop
shaping is mostly presented when the plant is

normalised coprime factored, see e.g. (Glover and
McFarlane 1989) in continuous time, or (Walker
1990) in discrete time. The unified mixed H∞-
solution mentioned above is in this paper applied
to the loop shaping scheme without the need for
such normalised coprime factorisation. It is also
shown how multiplicative and additive uncertain-
ties at plant input and output can be interpreted.

The contributions of this paper is mainly the uni-
fied mixed continuous/discrete-time solution that
also applies to time-varying and periodic systems.
Typical applications can be pure continuous-time
and discrete-time systems as well as systems with
mixed continuous/discrete-time measurements. It
also applies to hybrid systems in the meaning
time-driven discrete-event systems including con-
tinuous dynamics. It gives a solution that indi-
rectly implies a test on detectability and sta-
bilisability, which is normally not a trivial task.
The results can be considered as generalisations
of (Glover and McFarlane 1989, Walker 1990).
Other related works in this field are e.g. (Aripirala
and Syrmos 1997, Xie and Syrmos 1997, Iglesias
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2000). For continuous-time periodic systems, the
periodic behaviour is achieved from a lifted (or
discretised) equivalent discrete-time system. Such
discretisation is often discussed in the sampled-
data case, cf. (Toivonen and S̊agfors 1997). The
results are derived for proper, but not strictly
proper, system models, i.e. the plant model can
have a direct through term D �= 0.

Some useful mixed notations are introduced in
Section 2 in order to be able to give a compact so-
lution. In Section 3 the H∞-problem is presented
together with the loop shaping scheme. The gen-
eral design method is then applied, and the mixed
static feedback-, filter- and output feedback so-
lutions are given. Finally, for periodic systems,
an attractive discretisation method is presented,
which considers the continuous-time integration
over the period. The results are summarised in
Section 4.

2. MIXED NOTATIONS

First some mixed continuous/discrete-time nota-
tions are introduced in order to be able to give
a unified result. Consider a general mixed system
with µc/µd as inputs and ηc/ηd as outputs, with
Gc for t �= tk and Gd for t = tk:

Gc :
{
ẋ(t) = Ac(t)x(t) +Bc(t)µc(t)
ηc(t) = Cc(t)x(t) +Dc(t)µc(t)

(1a)

Gd :
{
x(t+k ) = Ad(tk)x(t−k ) +Bd(tk)µd(tk)
ηd(tk) = Cd(tk)x(t−k ) +Dd(tk)µd(tk)

(1b)

When no index c or d is used, the signals and
matrices are assumed to be mixed, i.e. continuous-
time when t �= tk and discrete-time when t =
tk. Let the input signal µ be composed of the
disturbance signal w and the control signal u as
µ = [w′ u′]′. Similarly, let the output signal η
be composed of the performance signal z and the
measured output y as η = [z′ y′]′. The system
is now in the standard form for H∞-applications.
A mixed signal is composed of both discrete-time
and continuous-time contributions, and its size is
expressed as (for z)

‖z‖2
[0,Tf ] =

∫ Tf

0

z′c(t)zc(t)dt+
∑

tk∈[0,Tf ]

z′d(tk)zd(tk) (2)

Note that zc in (2) is not formally defined at times
tk. However, the time limits exist, and the integral
can be considered as a sum of integrals. Variables,
that are solutions to a mix of differential- and dif-
ference equations, appear as piece-wise continuous
variables with jumps. To describe differential- and
difference-equations for such variables similarly, a
“forward” notation is introduced:

x+ = ẋ(t), t �= tk (3a)

x+ = lim
ε→0
x(tk + ε) = x(t+k ) (3b)

and similarly for “backward” (x−), ε ∈ R
+. The

systems in (1) can then be considered as the mixed
system

G :


 x

+

z
y


 =


 A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu





 xw
u


 (4)

where the B-, C- and D-matrices in (1) are
partitioned accordingly. Note that the absence of
time notations in systems and signals is just for
simpler notation; the system may be time-varying
throughout this paper.

The state-transition matrix ΠA(t, s) for the mixed
system x+ = Ax from time s to t, is defined by

Π̇A(t, s) = Ac(t)ΠA(t, s), t �= tk (5a)

ΠA(t+k , s) = Ad(tk)ΠA(t−k , s) (5b)

The mixed system is exponentially stable, see
e.g. (Sun et al. 1993), if there exist positive real
numbers c1, c2 such that ‖ΠA(t, s)‖ ≤ c1e−c2(t−s),
0 ≤ s ≤ t. This is also denoted as the system
A being stable. The mixed system G in (4) is
said to be stabilisable (detectable), if there exist a
bounded mixed matrix L (K), such that the sys-
tem A−BL (A−KC) is stable. When the system
is periodic with period Tp, the system matrices
are repeated periodically, e.g. A(t + �Tp) = A(t),
l being an arbitrary integer.

To present the mixed solution in a compact form,
define a mixed matrix notation � suitable for
Lyapunov- and Riccati equations according to

A � P ≡ AcP + PA′
c, t �= tk (6a)

A � P ≡ AdPA
′
d, t = tk (6b)

Also introduce the notations δtk
, Atk

that allow
us to express some continuous- and discrete-time
matrices in a unified way:

δtk
=

{
0, t �= tk
1, t = tk

; Atk
= δtk

A+ (1 − δtk
)I (7)

See (Christiansson et al. 2000) for more details on
the mixed notation.

3. THE H∞ LOOP SHAPING PROBLEM

The general mixed H∞-control problem can be
expressed for the system (4): Find an output
feedback controller u = K(y), such that the bound
on the induced norm of the mixed closed loop
system from w to z

‖Gzw‖[0,Tf ] = sup
‖w‖[0,Tf ] �=0

‖z‖[0,Tf ]

‖w‖[0,Tf ]
< γ (8)

holds for a specified constant γ > 0. The supre-
mum is taken over all w in L2[0,Tf ] ⊕ l2[1,N ] such
that ‖w‖[0,Tf ] �= 0. In infinite-time horizon, i.e.
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Fig. 1. A general performance H∞-problem setup
for loop shaping.

when Tf → ∞, the controller shall give a stable
closed loop system. The system (4) may be time-
varying. The problem statement implies that z
and w can contain both continuous- and discrete-
time signals. The continuous-time periodic case is
specially treated when Tf → ∞. When choosing
the system setup according to Fig. 1, the solution
will be “γ-free” in the meaning that no γ-iteration
is needed. Let the performance measure be z =
[y′ u′]′, and the disturbances be w = [e′ v′]′. Note
that Bu is used for both u and w input signals
and Cy both for z and y output signals! This is in
fact the reason for the simplifications that imply
that no γ-iteration is needed. Let us for simpler
notations introduce B = Bu, C = Cy,D = Dyu.
The shorthands in (4) to use are then

Bw =
[

0 B
]
, Dzw =

[
I D
0 0

]
,Dzu =

[
D
I

]

Cz =
[
C
0

]
, Cw =

[
Cz

C

]
,Dyw =

[
I D

]
(9)

Furthermore introduce Dz =
[
Dzw Dzu

]
,Dw =[

Dzw

Dyw

]
. The H∞-problem will be solved as a

special case of the “three Riccati equation” mixed
general method, i.e. first the static feedback case,
then the filter for estimating ẑ, and finally the out-
put feedback case. The presentation will be held in
the mixed framework, such that continuous-time
and discrete-time results are simply two different
interpretations of the general results when sub-
scripts c or d respectively are introduced in the
matrix notations.

Fig. 2 and 3 show how the performance problem in
Fig. 1 can be considered as a robustness problem,
i.e. considering uncertainties. This paper consid-
ers the situation in Fig. 1 and Fig. 2 , while the
Glover-McFarlane plant structure can be consid-
ered as in Fig. 3. They all lead to the same result.

3.1 Static feedback

Follow the general mixed full information static
feedback solution as in (Christiansson 2000), with
the aggregated input signal µ =

[
[e′ v′] u′

]′. The
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Fig. 2. Multiplicative uncertainties at input and
output; y = (I − ∆e)−1G(I + ∆v)u
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Fig. 3. Additive uncertainties in the coprime fac-
tors, G = M−1N ; y = (M − ∆M )−1(N +
∆N )u

general mixed static feedback Riccati equation
can then be expressed as

S− =A′ � S + C ′
zCz − L′QµL (10)

where

L = Q−1
µ Qµx, Qµx = D′

zCz +B′SAtk

Qµ = D′
zDz − γ2Qγ + δtk

B′
wSBw

The matrix Qγ = diag(Inw
, 0nu

) implying that
w′w = µ′Qγµ. This general solution is applied
to the simplified system (9). The matrix Qµ can
be factored as Qµ = U ′diag(−Q̂w, Q̂u)U , with U
unitary. Furthermore, introduce the notations

ν = 1 − γ−2, Qν = I +D′D + δtk
B′SνB (11a)

Sν = νS, Lν = Q−1
ν (D′C +B′SνAtk

) (11b)

For a solution S in (10) to exist, the matrix
Qµ must be invertible, and thus also Q̂w and
Q̂u. These matrices are different in the the full
information (FI) and state feedback (SF) cases,
see more details in (Christiansson et al. 2001). For
the system (9) they are

FI :



Q̂w = (γ2 − 1)I +

[−D
I

]
Q̂−1

u

[−D′ I
]

Q̂u = I +D′D + ν−1δtk
B′SνB

(12a)

SF :



Q̂w =

[
(γ2 − 1)I −D

−D′ γ2I − (Qu − I)
]

Q̂u = (γ2 − 1)Qν(γ2I −Qν)−1
(12b)

For the full information case a sufficient demand
is γ > 1. In the following, only the FI case is
shown. The static feedback gain matrix L can
be partitioned as L = [−L′

w ν−1L′
ν ]′, where



Lw = 1
γ2−1

[
C ′ − L′

νD
′ L′

ν

]′. The mixed static
feedback Riccati equation (10) can now be ex-
pressed in Sν instead of S as

S−ν = A′ � Sν + C ′C − L′
νQνLν (13)

Note that all matrices in the Riccati equation
(13) are independent of γ, and thus no γ-iteration
is needed when solving this equation, however a
lowest possible γ > 1 as was discussed above.
One suboptimal static feedback full information
controller that achieves the norm bound (8) is

u∗ = −Q−1
u (D′C + ν−1B′SνAtk

)x−
−Q−1

u D
′e−Q−1

u (D′D + ν−1δtk
B′SνB)v (14)

When the disturbances e, v are the worst ones,
this optimal control is expressed as

u∗ = −Lνx (15)

Remark: This is the same controller as is
achieved for the SF-case, i.e. when the states can
be fed back directly, however the sub-optimal γ-
value might differ, see discussion after (12b).

3.2 Filter for estimating ẑ

Estimation of ẑ is performed with the aggregated
output signal η = [z′ y′]′, and initially without
the control signal u. The filter solution is, as is
more or less standard, solved as an adjoint full
information static feedback solution. The general
mixed filter Riccati equation is, cf. (10)

P+ = A � P +BwB
′
w −KRηK

′ (16)

where

K = RxηR
−1
η , Rxη = BwD

′
w +Atk

PC ′
w

Rη = DwD
′
w − γ2Rγ + δtk

CwPC
′
w

The matrix Rγ = diag(Inz
, 0ny

). The filter Riccati
equation for the system (9) can be further simpli-
fied with the notations

Ry = I +DD′ + δtk
CPC ′ (17a)

Ky = (BD′ +Atk
PC ′)R−1

y (17b)

Then the mixed filter Riccati equation (16) can
be rewritten

P+ = A � P +BB′ −KyRyK
′
y (18)

As (13), this Riccati equation does not depend
on γ, and thus no γ-iteration is needed for this
solution either. In fact, from a filter point of view,
γ can be arbitrary small, however positive. One
filter that achieves the bound ‖G(z−ẑ)w‖[0,Tf ] < γ,
when also the control signal is included, is

x̂+ = Ax̂+Bu+Ky(y − ŷ) (19)

ẑ =
[
y
u

]
, ŷ = Cx̂+Du

Note that this filter ẑ only holds the measured
output y and the known controller output u.

3.3 The output feedback controller

The output feedback solution is achieved from
studying a “new” transformed system with in-
put and output signals as weighted deviations
of the “optimal” ones, here denoted ē, v̄ and ū
respectively, see the general mixed solution in
(Christiansson 2000). The transformed system,
without the input signal u, is

 xū
y


 =


 Ā B̄w̄

C̄ū D̄ūw̄

C̄y D̄yw̄





 x[
ē
v̄

]

 (20)

where

Ā = A+ γ−2ν−1BLν , B̄w̄ =
[

0 γB
]
Q̂

− 1
2

w

C̄ū = ν−1Q
1
2
u Lν , C̄y = ν−1C

D̄ūw̄ = γQ
− 1

2
u

[
D′ Qu−I

]
Q̂

− 1
2

w

D̄yw̄ = γ
[
I D

]
Q̂

− 1
2

w

The output feedback solution is achieved from a
filter solution for the transformed system (20).
The corresponding Riccati equation has a solution
P̄ , which can be obtained from the static feedback
and filter solutions Sν and P . Also introduce P̄ν
and the following holds

P̄ν = ν−1P̄ = P (I − γ−2(I + SνP ))−1 (21)

For simpler controller formulation, introduce the
matrices

Kν = (BD′ +Atk
P̄νC

′)(I +DD′ + δtk
CP̄νC

′)−1

Kνy = (D′ + δtk
Lν P̄νC

′)(I +DD′ + δtk
CP̄νC

′)−1

(22)

The results are now summarised in a theorem.

Theorem 1. Consider the mixed time-varying sys-
tem (4) with (9) on t ∈ [0, Tf ]. Then

• there exists a mixed controller u = K(y)
on t ∈ [0, Tf ], which achieves the bound
‖Gzw‖[0,Tf ] < γ

if and only if (⇔)

• there exist mixed piece-wise continuous ma-
trix functions Sν ≥ 0, P ≥ 0 satisfying the
mixed Riccati equations (13) and (18) on
t ∈ [0, Tf ].

• the spectral radius ρ(SνP ) < γ2 − 1 on
t ∈ [0, Tf ].

One controller, that achieves the bound is

x̂+ν =Ax̂ν +Bu+Kν(y − ŷ) (23a)

ŷ =Cx̂ν +Du (23b)

u= −Lν x̂ν −Kνy(y − ŷ) (23c)

where Kν ,Kνy are defined in (22), Lν in (11b)
and P̄ν in (21). ✷



Proofs for the general case are found in (Christians-
son 2000), and applied to the system (9) also
in (Christiansson et al. 2001). This special appli-
cation is attractive since there is no need for γ-
iteration when solving the Riccati equations, how-
ever the spectral radius demand must be fulfilled,
i.e.

γ >
√

1 + ρ(SνP ) (24)

which is > 1, as was a sufficient demand for the
Sν-solution to exist. Pure continuous-time and
discrete-time solutions are just different interpre-
tations of this mixed result. Note that the matrix
D can be non-zero, and that there was no need
for any normalised coprime factorisation of the
plant. In continuous time, the controller is strictly
proper when D = 0, however not when D �= 0.
In discrete-time, the controller is never strictly
proper. Strictly proper discrete-time controllers
are discussed in e.g. (Mirkin 1997, Iglesias 2000).

The situation in Theorem 1 can be extended to
infinite time horizon, if additional detectability
and stabilisability conditions for the system are
added, see e.g. (Christiansson et al. 2000).

Theorem 2. Consider the situation in Theorem 1,
when Tf → ∞. Assume further that the system
(A,B,C) is stabilisable and detectable. Then the
controller (23) is stabilising. ✷

Proofs are found in (Christiansson et al. 2001).
In cases where it is not obvious how to check the
detectability and stabilisability criteria, such as
for periodic and mixed systems, these tests can
preferably be replaced by a check afterwards that
the systems A−BLν and A−KyC are stable, see
discussion in next subsection.

3.4 Periodic continuous time systems

For periodic systems, the continuous-time static
feedback and filter solutions between time instants
t and t + Tp, where Tp is the period, can be
achieved from a lifting (or discretisation) proce-
dure as in the sampled-data case in e.g. (Toivonen
and S̊agfors 1997). The γ-free continuous-time
Riccati equations (13) and (18) can be reorganised
as

−Ṡν =A′
νc
Sν+SνAνc

+C ′
νc
Cνc

−SνBνc
B′

νc
Sν (25a)

Ṗ = Aνc
P + PA′

νc
+Bνc

B′
νc

− PC ′
νc
Cνc
P (25b)

where

Aνc
= Ac −Bc(I +D′

cDc)−1D′
cCc

Bνc
= Bc(I +D′

cDc)−1
[−D′

c I
]

Cνc
=

[
I

−D′
c

]
(I +DcD

′
c)

−1Cc

The Hamiltonian matrices associated with the
static feedback and filter Riccati equations (25)
are respectively

HSν
=

[
Aνc

−Bνc
B′

νc−C ′
νc
Cνc

−A′
νc

]
(26a)

HP =
[ −A′

νc
C ′
νc
Cνc

Bνc
B′

νc
Aνc

]
(26b)

These are related as HP = T−1HSν
T with T =[

0 I
−I 0

]
. The transition matrix from time s to

t associated with HSν
is denoted Π(t, s). Let Π

be partitioned as Π =
[

Π11 Π12

Π21 Π22

]
. Now there

are enough preliminaries to give a discretisation
theorem reflecting the situation over the period.

Theorem 3. Consider the periodic system (9) in
continuous time over the period Tp, from time
instant t to t+ Tp. The discretised system model[

x(t+ Tp)
z̃(t, Tp)

]
=

[
Ã B̃

C̃ 0

] [
x(t)
ũ(t, Tp)

]
(27)

where Ã(t, Tp) = Π−1
11 (t, t+Tp)

B̃(t, Tp)B̃′(t, Tp) = Π−1
11 (t, t+Tp)Π12(t, t+Tp)

C̃ ′(t, Tp)C̃(t, Tp) = Π21(t, t+Tp)Π−1
11 (t, t+Tp)

generates discrete-time static feedback and filter
Riccati equations with the same solutions as the
continuous-time system does at time instants t
and t+Tp respectively. These Riccati equations
are
Sν(t) = Ã′(I+Sν(t+Tp)B̃B̃′)−1Sν(t+Tp)Ã+ C̃ ′C̃

P (t+Tp) = ÃP (t)(I + C̃ ′C̃P (t))−1Ã′ + B̃B̃′ ✷

The state transition matrices for A−BLν (static
feedback) and A−KyC (filter) respectively from
times t to t+Tp can be derived for the discretised
system (27) and are respectively

ΠA−BL(t+Tp, t) = (I + B̃B̃′Sν(t+Tp))−1Ã

ΓA−KC(t+Tp, t) = Ã(I + P (t+k )C̃ ′C̃)−1

The discretised system model (27) can thus be
used for periodic continuous-time systems to
achieve the solution integrated over the period.
In steady state, when final time Tf → ∞, the
solutions, if they exist, are periodic such that
Sν = Sν(t) = Sν(t + Tp), P = P (t) = P (t + Tp),
and algebraic Riccati equations are obtained.

The corresponding discrete-time state updates
at times tk are achieved from Ad − BdLνd and
Ad −Kyd

Cd respectively, and the state transition
including both the continuous and discrete parts
between two arbitrary sampling instants t−k and
t−k+1 can be calculated as

ΠA−BL(t−k+1, t
−
k ) = ΠA−BL(t−k+1, t

+
k )(Ad−BdLd)

ΓA−KC(t−k+1, t
−
k ) = ΓA−KC(t−k+1, t

+
k )(Ad−Kyd

Cyd
)



When there are a number, r, of discrete updates
during the period the combined state transitions
for A−BLν over the period are considered as

ΠA−BL(t−k+r, t
−
k ) = ΠA−BL(t−k+r, t

−
k+r−1) · · ·

· · ·ΠA−BL(t−k+1, t
−
k ) (30)

and similarly for the filter. Then the closed system
is stable, if the eigenvalues of ΠA−BL(t−k+r, t

−
k ) all

are inside the open unit disk and similarly for the
filter. If A−BLν and A−KyC so are determined
to be stable over the period, the system is ob-
viously stabilisable and detectable. This is a con-
structive way to check stabilisability/detectability
of the system (A,B,C), especially when this is
difficult to do in advance. On the other hand,
if it is easily tested that the system (A,B,C) is
detectable and stabilisable there is no need to do
the test afterwards.

4. SUMMARY OF MIXED H∞LOOP
SHAPING DESIGN

There are a number of advantages to point out
about the H∞-design procedure presented in this
paper. First of all the system setup (9) does not
require any γ-iteration, as is the case in a more
general H∞-setup. Nor is there a need for any
normalised coprime factorisation of the plant, as
is the case in traditional loop shaping solutions.
The mixed approach is attractive since it shows
a close relation between the continuous-time and
discrete-time solutions, such that these are simply
obtained as two different interpretations of the
unified mixed result. Simple discrete-time results
are given for continuous-time periodic systems,
reflecting the behaviour over the period. The re-
sults are applicable for a number of situations,
e.g. time-varying systems and hybrid systems in
the meaning time-driven discrete-event systems
including continuous dynamics. When γ → ∞,
this loop shaping solution is identical to the well
known LQG-solution. The paper also gives a con-
structive way to test whether a time-varying sys-
tem is stabilisable and detectable.
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