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Abstract: This paper deals with defining measures of model closeness and establishing
quantitative confidence bounds on nominal models. Confidence in a model is an indication
of how uniquely identifiable the best fitting parameter values are from the data. These
concepts are examined in both the linear and nonlinear regimes, with a practical example
used to explore these propositions.
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1. INTRODUCTION

Determining confidence in a control-orientated model
aims to help answer the question, “Is the model be-
lievable?”. This question prefaces those concerning
stabilizing controller availability and controlled plant
performance. In essence, it is highlighting the need
to ask more questions about the model quality before
proceeding with the control design paradigm.

Standard approaches to modeling seek to find models
which minimize the error between the plant and the
model via some measure, e.g. one-step-ahead predic-
tion error. This nominal model which is chosen as
‘best’ according to the measure, is then assumed to
produce the best closed loop control performance, via
control design treating the model as if it were the real
plant. Some telling examples show that a model well
suited to prediction does not necessarily imply a high
performance controlled plant (Schrama, 1992; Bit-
mead and Sala, 2000). Use of this “certainty equiv-
alence” approach in practice relies upon the model-
ing errors being dealt with by the controller via ro-
bust control techniques, resulting in degradation in the
nominal performance. This degradation is related to
how uniquely identifiable the best-fit parameter values
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are from the data - this property shall be referred to as
model confidence.

The larger modeling-for-control question is, “Does
the nominal model plus the confidence in that model,
allow manageable performance bounds on the con-
trolled real plant?” Establishing confidence in a nom-
inal model helps answer this question.

Systematic approaches to identifying nominal models
and model errors has received a great deal of atten-
tion (Ljung, 1999). Recently there has been analysis,
using “certainty equivalence”, to establish properties
of control designs where there is a direct algebraic
relationship between the nominal model and the con-
troller. For example Model Reference Control (MRC)
(Gevers et al., 1997),

C =
T0

P̂ (1� T0)
; (1)

where T0 is the desired complementary sensitivity
function, and Internal Model Control (IMC) (Bitmead
and Dunstan, 2001),

C =
G

P̂ (1 +G)
; (2)

where,

G = P̂a

�
�i

s+ �i

�n
;
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with P̂a the all-pass transfer function of the model and
n the relative degree of the model.

These techniques which have a simple mapping from
P̂ to C reveal much about how the controller design
is constrained by nominal model properties. In both
cases, although the mapping is simple, and the insight
gained solid, the analysis is rather difficult.

It is research in these areas of the mapping between
modeling and control that aim to show that successful
controllers can be design based on low order models
that capture only the essential characteristics of the
plant for control. This paper aims to highlight that the
nominal model measures and confidence are core in
this arena, with a nonlinear application being be used
as an example.

Section 2 is a discussion of the relations between the
experimental data, the nominal model and the confi-
dence. This shall begin with the linear case, followed
by the nonlinear case.

Section 3 addresses the problem which motivates our
research in this area, namely modeling for control of
a jet turbine instability. We shall describe the some
typical nominal model measures and attempt to draw
conclusions, if possible, about the model confidence.

Finally some concluding remarks outline the direction
for the forthcoming research.

2. NOMINAL MODELS, MEASURES AND
CONFIDENCE

2.1 Linear Case

Consider input/output data from a linear plant,

yt = P (�; z) ut; t = 1; :::; N (3)

where P (�; z) = b(z)
a(z) whose polynomials are defined

a(z) = 1 + a1z
�1 + :::+ anaz

�na

b(z) = b1z
�1 + :::+ bnbz

�nb

and N is the number of data samples.
Equation (3) may be written as

yt = �Tt � (5)

with

�Tt =
�
�yt�1 �yt�2 � � � � yt�na ut�1 � � � ut�nb

�
� =

�
a1 a2 � � � ana b1 b2 � � � bnb

�T
;

or, alternatively,
0 = �T

t � (7)

with
�T
t =

�
�yt �

T
t

�
� =

�
1
�

�
:

Composing the regressor matrix, �t, as

�t =
�
�t �t�1 � � ��1

�

=

2
666666664

�yt �yt�1 � � � �y1
...

�yt�na �yt�na�1 � � � �y1�na
ut�1 ut�2 � � � u0

...
ut�nb ut�nb�1 � � � u1�nb

3
777777775

(9)

The modeling task is to find the non-trivial solution to,

0 = �T
N �: (10)

A unique exactly zeroing solution to (10) exists if and
only if �N has a single null vector with a leading one.
Since �N is an (na + nb + 1)�N matrix with N >

(na+nb+1), one could equally consider the null space
properties of �N�

T
N . If the null space of �N�

T
N has

dimension greater than one, then the zeroing solution
is not unique. Such a circumstance is indicative of
poor data excitation or the overparametrization of the
model structure.

The more usual problem is that rank(�N ) = (na +
nb +1) because of noise present in the data. One then
seeks the value of � which solves,

min
�



�T
N �



2
2
= min

�
�T�N�

T
N�: (11)

This is the normal least squares ARX model prediction
error criterion,

VN (�) =
1

N

NX
t=1

[yt � �Tt �]
2 =

1

N
�T�N�

T
N�:

(12)
The solution to the minimization problem (11) is �̂,
equal to the eigenvector of �N�

T
N (corresponding to

the least eigenvalue) scaled by it’s leading term. This
is clearly identical to the regular least squares solution
vector, �, extended by one. The resulting parameter
estimate, �̂, is then given by,

�̂ = �j @VN (�)

@�
=0

: (13)

A notion of parameter estimate confidence is intro-
duced by considering the extent to which �̂ is sensitive
to small changes in the data, �N�

T
N .

The eigenvector corresponding to the smallest eigen-
value of a perturbed �N�

T
N will remain lightly per-

turbed provided the next smallest eigenvalue is suffi-
ciently far away. Confidence can then be tied to the
eigenvalue properties of �N�

T
N .

Other experimental data samples, if available, provide
the statistical independence required to test the model
confidence, and as such are an important step in the
model validation process.

Hence in the linear systems framework using the least
squares criterion, the nominal model and the param-
eter robustness margins defining confidence, can be
evaluated analytically.



2.2 Nonlinear Case

The first step as in the linear case is to define a suit-
able model fitting measure, VN (�). The difficulty now
is in capturing what is believed to be important for
the model’s purpose. If the model is for controller
design, then one should consider, “What are the im-
portant characteristics in the data to capture?”, e.g.
dominant spectral features, the system energy regions,
or the time domain prediction error. Closely coupled
is the choice of open loop, V OL

N (�), or closed loop
V CL
N (�) measures. Which raises the question, “Does

a highly confident nonlinear open loop model have
any definite bounds in the closed loop?”. This task
of defining a measure, although the designer’s choice,
will ultimately affect the performance of the model’s
objective.

The definition of parameter estimate, �̂, is still (13),
i.e. that which minimizes the chosen measure w.r.t.
variation in parameters.

However the notion of confidence in nonlinear sys-
tems is introduced in a slightly different way. Consider
the Taylor series expansion of VN (�) about the mini-
mizing solution, �̂,

VN (�̂ + d�) =VN (�̂) +
@VN (�)

@�

����
�̂

d�+

1

2
d�T

@2VN (�)

@�2

����
�̂

d� +O(jd�j3)

(14)
The minimizing solution, �̂, was chosen based upon
@VN (�)
@�

= 0, so the second term is zero. The varia-

tion in VN (�) in response to small variations in �̂ is

given by the third term. We shall refer to @2VN (�)
@�2

���
�̂

as the sensitivity matrix. Provided the solution is min-
imal and unique the sensitivity matrix will be positive
definite. Confidence in nominal parameter values is
connected to this sensitivity matrix. Eigenvalue and
eigenvector properties of the sensitivity matrix con-
vey information about directions and magnitudes of
observed variations in VN for variations in �̂. Large
eigenvalues would appear to inspire high confidence
as they indicate a strong sensitivity of VN (�) to pa-
rameters in the direction of the corresponding eigen-
vectors. Low eigenvalues, indicating low sensitivity of
Vn in the corresponding direction, have a reduced sen-
sitivity of the value of Vn to the specific value of �, and
thus inspire less confidence in the estimated measure-

minimizing value. In this sense, �min
�
@2VN (�)
@�2

���
�̂

�
represents the limit of confidence.

However, one must be careful with this interpretation.
The eigenvalue and eigenvector properties will be af-
fected by scaling of parameters (e.g. � could be mea-
sured in sec or msec). One needs to link the variation
of VN to the permissible variations of the components
of �. Confidence should take into consideration al-
lowable parameter ranges (e.g. physically f may be

allowed to vary by �10Hz, and � by only �0.0005
sec - a factor of order four in variation). Equally, in
developing a formal notion of confidence one might
also consider including a comparative measure of the
minimal value of VN and the size of local variations.

Referring back to the linear system case, with normal
least squares ARX model prediction error measure,
and using the minimum eigenvalue of the sensitivity
matrix as a measure of model confidence, �, would
yield:

� = �min

 
2

N

NX
t=1

�t�
T
t

!
:

Thus � is determined explicitly by the quality of the
experimental data used for the parametrization, i.e.
the experiment design issues, as was concluded pre-
viously. One could equally well look at the eigenval-
ues of ��T as discussed before. The first eigenvalue,
�1(��

T ), should be zero or close to it. The remain-
ing eigenvalues (�2(��T ); :::; �n+1(��

T )) should
be comparably large in magnitude.

Hence this more general view of confidence being
related to the sensitivity matrix, applied the linear case
with least squares measure, reduces to the same result
proposed in the linear case.

In the nonlinear case however there is no obvious
analytical link between � and the data quality. So it
is proposed to calculate the sensitivity matrix using
empirical derivatives of simulation results. Employing
centralized difference equations as follows,

@VN (�)

@�i

����
�̂

=
1

2

"
VN (�̂ + Æ�i)� VN (�̂ � Æ�i)

Æ�i

#

@2VN (�)

@�j�i

����
�̂

=
1

2Æ�j

"
@VN (�̂ + Æ�j)

@�i
�

@VN (�̂ � Æ�j)

@�i

#

=
VN (�̂ + Æ�j + Æ�i)

4Æ�j Æ�i
�

VN (�̂ + Æ�j � Æ�i)

4Æ�j Æ�i

�
VN (�̂ � Æ�j + Æ�i)

4Æ�j Æ�i
+

VN (�̂ � Æ�j � Æ�i)

4Æ�j Æ�i
(16)

where i; j = 1; :::; n, and n is the number of free
parameters in �.

Providing we are careful about the size of Æ i and Æj ,
(16) should result in an empirical value of the sensitiv-
ity matrix, which can be used in making quantitative
judgements of the confidence in a parameter set.

Attempting to check these confidence statements us-
ing a validation set of data raises another broad ques-
tion, “How do we perform a validation test on the con-
fidence given to a particular �̂ for a nonlinear model?”.
The intention is not to attempt answering this question
here, merely to highlight its importance in the overall
procedure.



3. PRACTICAL APPLICATION

The underlying motivation for this paper, is a prac-
tical problem occurring in combustion chambers of
jet engines. Operating jet engines at low fuel-to-air
ratios can produce medium-range(100-1000Hz) insta-
bilities, believed to be from the nonlinear interaction
between chamber pressure, pt, and the heat release
rate, qt.

The objective is to ameliorate these instabilities using
a control design from a low complexity model. So far
this has been a problem of fitting a nonlinear model
with data from experiments. The question sought to
resolve now, is whether there is good confidence in
the identified model.

The experimental data is shown the time domain in
Figure 1 and the frequency domain in Figure 2. The
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Fig. 1. An 80ms time segment of the pt and �qt.
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Fig. 2. Frequency plots of pt and �qt.

data, pt and qt, are characterized by sustained os-
cillations. It is assumed there is no external excita-
tion (other than a small additive noise component),
so the system must be limit-cycling, which implies
non-linear dynamics are present. The data are almost
periodic, with sinusoids at 210Hz and 740Hz plus
harmonics of 210Hz. The �qt signal is deficient of high

frequency components due to the q t sensor exhibiting
a low pass filtering effect.

The model structure, provided by a priori physical
reasoning (Peracchio and Proscia, 1998), is shown in
Figure 3. The model relates pt and qt in a closed

Fig. 3. The proposed model.

loop and consists of (clockwise from top): two cou-
pled oscillators (N;M;! = 2�f; �), differentiator,
time delay (� ), negative saturation nonlinearity (	[�]),
differentiator and an additive noise source (n t).

An in depth data analysis was performed by Murray
et al. (1998), while the fitting of the model parameters
using the experimental data was shown by Savaresi et
al. (2001). These parameter values shall be used as
initial values and are shown in Table 3.

Table 1. Model parameters of Figure 3.

Par. Parameter Initial Par. Est. Par. Est.
No. � Value �̂OL �̂CL
1 M 1.00 1.00 1.00
2 N 1.00 0.43 0.80
3 f 206 211 202
4 � 0.20 0.19 0.18
5 � 3.47 3.44 3.44
6 slope(	[�]) -0.56 -0.91 -0.77
7 min(	[�]) 0.11 0.10 0.60
8 pwr(nt) 1.00 - 1.00

3.1 Defining Measures

A measure, V (�), must be chosen that allows a min-
imizing parameter vector, �̂, to be found. Many mea-
sures are available which compare various time do-
main statistical or spectral properties. To narrow these
options, issues affecting control design should be at
the forefront of the measure choice. The aim of the
control design is to ameliorate the 210Hz oscillation,
while not creating similar oscillations in the local
vicinity. Capturing the two dominant spectral com-
ponents (210Hz and 740Hz) in both frequency and
magnitude appears a reasonable target to begin with.
It does not appear that close matching of the noisy
low amplitude spectral components is needed, and so
the measure should not be penalized for excluding



these. However the noise power, nt, is included in
the parameter vector, as it was shown in Dunstan et
al. (2001) that this directly affects the simultaneous
existence the 210Hz and 740Hz components.

Two candidate measures are proposed:
(1) An open loop prediction error measure using least
squares.
(2) A closed loop simulation measure using a spectral
matching measure.

3.2 Open Loop Prediction Measure

This measure involves breaking the loop at p t as
shown in Figure 4. The experimental pressure data, p t,
is used as the input to the model and the predicted out-
put is p̂t. The external noise source, nt, is not needed

Fig. 4. Open loop prediction error measure.

as the input, pt, already possesses noise. Incorporating
nt could only worsen the prediction error and so will
not be identified.

The two signals are compared using a least squares
approach:

V OL
N (�) =

1

N

NX
t=1

[pt � p̂t]
2 (17)

The minimum measure using (17) produced produced
the model and data jFFT j comparison shown in Fig-
ure 5. The parameters, �̂OL, that minimized this mea-
sure are shown in Table 3.

The parameter sensitivity matrix was created by per-
turbing the individual parameters of �̂ by 0.1% and
evaluating Equation (16). The eigenvalues and eigen-
vectors for the sensitivity matrix are shown in Table 2.
The strongest confidence is obtained for �6 and �7, as
these two eigenvalues are well bounded away from the
others. The parameters in the associated eigenvalues,
shown in boldface, correspond to � and � . Thus we
speculate that our estimated values for � and � are ac-
curate. As for the other parameters, their eigenvalues
are much smaller and hence inspire a lower confidence
in their accuracy.
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Fig. 5. Comparison of jFFT j of experimental data, p t,
and open loop predicted data, p̂t, using an open
loop prediction error measure.

Table 2. Eigenvalues (�i) and eigenvectors
(vi) of the O.L. sensitivity matrix.

�1 �2 �3 �4 �5 �6 �7
0.01 0.02 0.04 0.23 0.52 216.21 328.24

v1 v2 v3 v4 v5 v6 v7
-0.02 0.06 -0.28 0.76 -0.55 0.10 0.16
-0.04 0.02 -0.18 0.53 0.83 0.00 0.01
0.98 -0.12 -0.14 -0.00 0.02 0.00 -0.00
0.01 -0.00 0.07 0.20 -0.10 �0:43 �0:87

0.01 0.00 0.01 0.02 -0.01 �0:90 0:45

0.17 0.39 0.86 0.27 0.02 0.07 0.09
-0.06 -0.91 0.36 0.18 -0.01 0.03 0.05

3.3 Closed Loop Simulation Measure & Confidence

The simulation, performed in closed loop as shown in
Figure 3, produces p̂t. The spectrum of the simulation
�p̂(!) is compared to the spectrum of the experimen-
tal data �p(!), using

V CL
N (�) =

X
!2


[�p(!)��p̂(!)]
2

[�p(!) + �I ]
2 �W (!)

(18)
where 
 is the frequency grid of interest and W (!)
is a weighting function which captures important fea-
tures.

In this example,
 is defined over the range 0 - 1000Hz
and the weighting function captures the dominant
peaks. The minimum measure using (18) produced the
model and data jFFT j comparison shown in Figure 6.
The parameters, �̂CL, that minimized this measure are
shown in Table 3.

The parameter sensitivity matrix was created by per-
turbing the individual parameters of �̂ by 1% and
evaluating Equation (16). The eigenvalues and asso-
ciated eigenvectors of the sensitivity matrix are shown
in Table 3. Notice that �1 is almost 30� larger than
the second highest eigenvalue, �2. This leads us to
again speculate that the parameters associated with
v1, namely �, are accurate. Indeed this is one of the
same parameters we had confidence in when using
the open loop measure. As for the other parameters,
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Fig. 6. Comparison of jFFT j of experimental data, p t,
and closed loop simulated data, p̂t, using a closed
loop simulation measure.

Table 3. Eigenvalues (�i) and eigenvectors
(vi) of the C.L. sensitivity matrix.

�1 �2 �3 �4 �5 �6 �7 �8
2�10

5
7�10

3
7�10

3
4�10

3
1�10

3
1�10

2
1�10

�1
6�10

2

v1 v2 v3 v4 v5 v6 v7 v8
0:07 0:58 -0.71 -0.03 0.11 -0.38 0.00 -0.03
0:01 �0:77 -0.63 -0.02 -0.01 0.00 0.00 0.00
0:00 0:00 0.00 0.00 0.00 0.00 -1.00 0.01

�1:00 0:05 -0.06 0.00 -0.02 0.00 0.00 0.00
0:00 �0:02 0.03 0.01 0.12 0.03 -0.01 -0.99
0:03 0:09 -0.09 0.00 -0.98 0.03 0.00 -0.12
0:03 0:23 -0.29 -0.01 0.07 0.93 0.00 0.03
0:00 0:00 -0.04 1.00 0.01 0.00 0.00 0.01

their eigenvalues are much smaller and hence inspire
a lower confidence in their accuracy.

4. CONCLUSION

In this paper we have calculated empirically the sec-
ond order derivative of the loss function with respect
to the parameters, around the minimizing parameter
values. We interpret this as a measure of confidence in
the parameter values.

In future work we explicitly calculate the parame-
ter distributions using sub-sampling and re-sampling
techniques as a measure of confidence. This later def-
inition of confidence captures the sensitivity of the
parameters to variations in the data as seen in samples
from a single data record. The reader is referred to
Dunstan and Bitmead (2002).
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