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Abstract: In this paper, a robust vibration control scheme of the axially moving steel strip in
the zinc galvanizing line is considered. The boundary control force is applied to the strip
through the two touch rolls connected to a hydraulic actuator. The mathematical model of
the system, which consists of a partial differential equation describing the dynamics of the
traveling steel strip and an ordinary differential equation describing the actuator dynamics,
is derived by using the Hamilton’s principle for the systems with changing mass. The total
mechanical energy of the system is considered as a Lyapunov function candidate. For
vibration suppression purpose, a robust boundary feedback control law is designed. The
asymptotic stability of the closed loop system is verified through the Lyapunov analysis and
the semigroup theory. Copyright © 2002 IFAC.
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1. INTRODUCTION

Fig. 1 shows a continuous hot-dip zinc galvanizing
process. The steel strips, of order of 1m wide by Imm
thick, are preheated and passed at a constant speed
through a pot of molten zinc at a temperature in the
region of about 450 °C . A zinc film is entrained onto
the strip as it emerges from the pot. In order to
achieve the target deposited mass and maintain it over
a range of process conditions, a pair of air knives,
which direct a long thin wedge-shaped jet of high-
velocity air at the strip, are generally used to control
the deposited mass by stripping excess zinc back into
the pot. The deposited film solidifies while the strip
runs vertically upward, cooling as it goes, for a
distance of the order of about 110 m, to a gauge that
measures the mass of zinc deposited on the strip
surfaces.

The control aims of the galvanizing line are to
improve the uniformity of the zinc deposit on the
strip surfaces and reduce the zinc consumption. The
problem of regulating the hot-dip galvanizing process
by adjusting the air knives has been studied by
several researchers: McKerrow (1983) and Chen
(1995).
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Fig. 1. The traveling steel strip in a zinc galvanizing
line.

However, an immediate problem to adjust the air
knives is that there is a lack of the strip positional
information. Shifting strip position and vibration are
the main causes of differences between the average
deposited masses of the top and bottom strip surfaces
and the non-uniformity of the deposited mass across
the strip. Many galvanized steel producers such as
POSCO (Korea) and U.S. Steel have attempted to
measure the strip position directly by installing laser



transducers near to the air knives. However, no
success has been reported, because the high-
temperature environment makes the transducers
unreliable.

Thus, to improve the uniformity of the deposited
mass of zinc on the steel strip surfaces and to reduce
zinc consumption, the strip vibration should be
directly suppressed by using a more practical, flexible,
and reasonable control method. The external forces
from the air knives and air cooler as well as the
periodic excitation due to the support roller
eccentricity can be treated as disturbances to this
system. Robust control strategy is then needed to
suppress vibrations. Since a hydraulic touch-roll
actuator is used for exerting control force and the
mathematical model describing the dynamics of the
moving steel strip is represented as a partial
differential equation, the stability of coupled ODE
and PDE is analyzed using the semigroup theory.

The model proposed in this paper can further
represent various physical systems such as high-speed
magnetic tapes, band saws, belt drives, and paper
sheets during processing. The systems are often
subject to a stationary, one-sided constraint, such as a
read/write head in magnetic tape drives or a guide
bearing in band saws. The transient response of an
axially moving strip subject to arbitrary external
forces and boundary disturbances was investigated by
Zhu and Mote (1994). The active vibration control of
an axially moving string was studied by Lee and
Mote (1996), Renshaw et al. (1998), Fung et al.
(1999a,b), and Li et al. (2002).

The contributions of this paper are: The zinc
galvanizing line is analyzed and a control-oriented
model for the traveling steel strip is derived. The
tension applied to the strip is considered as a
spatiotemporally varying function. To the author’s
best knowledge, the paper is the first attempt on
boundary control of the axially moving string subject
to distributed external disturbance force. The robust
boundary control law derived is implementable. The
asymptotic stability of the closed loop system is
assured through the Lyapunov analysis and
semigroup theory.

2. PROBLEM FORMULATION: EQUATIONS
OF MOTION

Fig. 2 shows a schematic of the axially moving steel
strip for control system design purpose. The left
boundary at the sink roll is assumed fixed. The two
touch rolls linked to a hydraulic actuator in the
middle section of the strip will play the right
boundary, where the control input (force) is applied at
this right boundary. In the zinc galvanizing line, the
distance between the two supports is quite large
compared to the strip thickness. Therefore, the
moving steel strip can be modeled as a moving string.
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Fig. 2. An axially moving strip with two touch rolls
connected to a hydraulic actuator.

Let ¢t be the time, x be the spatial coordinate
along the longitude of motion, v, be the axial speed
of the strip, w(x,?) be the transversal displacements
of the strip at time ¢ and spatial coordinate x, and
! be the length of the strip. Also, let p be the mass
per unit area of the strip, T,(x,) be the tension
applied to the strip, and f,(x,z) be the distributed

external force resulting from the aerodynamic
excitation due to the air knives and air cooler.

As shown in Fig. 2, to suppress the vibrations of the
strip, the two touch rolls are attached at x=/ and
connected to a hydraulic actuator including a lumped
mass m,, a viscous damper with constant coefficient

d
control force £, (t) is applied to this actuator. The
partial derivatives denote (+), =d(-)/0¢t and (), =
0(-)/0x . The total derivative operator with respect to

., and a spring with constant stiffness k.. The

time is defined as (:)=a’(-)/dt= () vy

The kinetic energy of the system is
1 1
T= Ej(l)p{vsz +(vw, + wt)z}dx +5mcwt2(l,t) (1)
The potential energy of the system is

1,1 2 1 2

V=—| T,(x,0)w; dx +—=k.w (l,t). 2
IED S kW (L1) @)
The virtual work by the external forces is

W = f.w(l.0)~ [ fu6wdx

1
- .[0 c,(w, +vow )owdx —d w,(l,t)ow(l, 1) ,(3)
where ¢, is the viscous damping coefficient of the
steel strip. By using the Hamilton’s principle such
that J" (6T — 6V +6W)dt =0, the governing equation
to

and boundary conditions are derived as
Wi (5,0)+ 2V, Wy, (5, 0) + v W (X,1)
(T Ce, ), (x,0)) . + ¢, (W, (x,1)
+vow, (x,0)+ f;(x,0)=0, 4)
w(x,0) = wy(x), w,(x,0) = wyp(x), w(0,£)=0,
and
Je=mw, (L,O)+(d, = pvo)w, (1) + kw(l,1)
+(T, (L) = pv)yw, (L,1) )



where 0<x</ . Note that the right boundary
condition (5) is an ordinary differential equation that
describes the equation of motion of the hydraulic
actuator in compliance with the transversal force at
x=1.Let w(l)=w(,t) and T,(/)=T,(,1).

Note that the tension T,(x,?) is described as a

spatiotemporally varying function. Since the steel
strip is moving vertically in the zinc galvanizing line
as shown in Fig. 1, the gravitational force p gx,
which acts as an additional tension to the strip, cannot
be neglected. Also the tension itself may be time-
varying due to the eccentricity of the support roller,
which causes a periodic excitation. Thus, the tension
variation T,(x,¢) in the strip should be considered

as spatiotemporally varying function. Assume that

T,(x,t) is sufficiently smooth and uniformly
bounded as follows:
T:v,min < Ts(x,t) < Ts,maxs (6)

| (T < T |(TED)] < (T x> (1)
for all xe[0,/], t>0, and some a priori known

constants Ts,min s Ts,max > (Ts )t,max ’ and (Ts)x,max .

The boundary control problem of the traveling strip is
now formulated. From (1) and (2), the total

mechanical energy ¥V, (¢#) of the strip is given by
1

Fo(t) = o P (eut) + o (x.0)° d

11 1 1
+5joTsw§ dx +Emcw,2(l,t) +Ekcw2(l,t). (8)

The third and fourth terms in (8) denote the
mechanical energy of the hydraulic touch-roll
actuator. The objective of the control system design is
to stabilize asymptotically the transverse vibration of
the axially moving strip in spite of the existence of
distributed external disturbances.

Assume first that the strip is traveling at a constant
transport velocity v, between two fixed rolls, i.e.,

there is no actuator at x=/ . Then, the time
derivative of V,(¢) in (8) yields:

Vot) = [ 00, 4+ vw X(Tyw,) = €, (0w, +v,w,) = f)dx
+'[éTwa(th +vw,, )dx +%L§{(TS), +v3.(TS)x}wf,dx .
©)

The terms in (9) are simplified via integration by
parts and the boundary conditions as follows:

[ @wo), + Towwg b =[w,(Tw)]. (10)

The substitution of (10) and (11) into (9) yields:
. 1
Volt) ==¢, [ (w, +vywo) dx = v, T, (0)w; (0)

[Lw, @) e =[ 102y = [ Tw e, (1)

TR0 4 [ (T, 0, (1), i

= [ v+ vw) fd, (12)
where 7,(0)=7,(0,1).

From (12), the followings are concluded: Even
though the transverse velocity w, at the boundary is
zero, the instantaneous transverse velocity of a
material particle at the boundary is vow, .
Consequently, at each boundary, the transverse
component of the strip tension does work on the
string. For the traveling strip with fixed boundary
conditions, any traveling wave impinging on the
boundaries causes the decay of the total energy at
x=0 and the increase of the energy at x=/. Also,
the derivative of T7,(x,f) with respect to time
generates an energy flux to increase the total energy
by (T;), and (7,),. This shows that the time rate of

the change of 7, cannot be neglected for the

stabilization of the axially moving strip system.

Thus, it can be concluded for the traveling strip with
fixed boundary conditions that the traveling wave
impinging on the right boundary x =17, the time rate
of the tension 7, and the distributed external force
f, cause the increase of the total mechanical energy
Vo(®) in (8). To determine a boundary controller for

the stabilization of the vibration energy, the positive
definite, total energy V,(¢) can be considered as a

Lyapunov function candidate.
3. ROBUST BOUNDARY CONTROL

The distributed external force f,(x,#) resulting from

the aerodynamic excitation of the air knives and air
cooler can be treated as disturbances. Assume that

J 01 fy(e,t)*dx is uniformly bounded. Therefore, a

robust control algorithm that assures the boundedness
of all the signals and the asymptotic stability of the
system is needed. The main idea is to consider the
worst case of the uncertainties in the form of possible
bounds. Based upon the worst case, the robust
boundary control algorithm is designed.

Consider a modified functional V(¢#) such that

A
VOy=aVy(t) + 25, paw (vw, +w)dx,  (13)
where >0 and £ >0. Then by using Cauchy-

Schwarz inequality, it can be shown easily that there
exists a positive constant C such that

2], pxw,(vow, +w,) dx < CVy(0). (14)
From (14) and (15), the following holds:
(@ - CWo(t) SV (1) < (@ + W,y (1) (15)

where « > C . From (15), it can be concluded that
V(t) is equivalent to the Lyapunov function

candidate V,(¢) in(8)if a>C.



The time derivative of V(¢) along (4)-(5) yields:
. . 1
V(t) =aVy()+ Bolr(w, +vow)? ],
~ Bp] (v, +v,w,) dx

F2B[ L ow (Tw,) =, (v, +v,w.) = f)dx . (16)
The integration by parts yields:
2f L, (Tw) e = [o(wd)

! !
[ Towidx + [ x(T) widx . (17)
The following inequality is also utilized.

uvﬁyu2+lv2 forany y>0. (18)

Thus, by substituting (6)-(7), (17), and (18) into (16),
the time derivative of the energy V(¢) in the strip,
with a right boundary actuator at x =/ and the fixed
condition at left boundary, becomes:

V(l) < —[acv +Bp—ay, — 2pe, lj_[é(w, +v,w, ) dx
72

av

2

_{ ﬁTs,min _(:Bl+ j(Ts)x,max _%(Ts)t,max

! a 201 )¢
—2B1(e,yy +73)ff widx +(y—+yij [ fidx
1 3

—{alyd.—pv)—Bol fw (1) +w-Dadw ()
B+ an)T,()+ Bo 2wl (1)
+Q2Bp v, +apvy) wo () w, (1) +a fow, (), (19)

where >0 such that {a(l//dc—pvs)—ﬁpl}>0.

If T,

w.min 18 sufficiently large, the positive values «,

p,and y;, i=123, can be chosen to satisfy

(acv+,8p—ay1—2’&vlj>0 s (20)

2

av a

T, .. —| Bl+—=|(T -=(T

{ﬂ s,min (ﬂ 2 j( s)x,max 2( s)t,max
—2B1(c,7, +73)}>0. (21)

By the assumption of the uniform boundedness of

Sfa(x,t), the upper bound of the third term in (19)

can be given by

(1+£]j’f;dxga, 550, (@)
o7 0

The robust boundary control laws, which make the
time derivative of the total energy negative semi-

definite, ¥ (r)<0, are then proposed as follows:
Case I: |w, ()2 ¢,

w,()=-mw,(), m >0, (23)

fo=kow,(D+o,@mw,d)", k>0, (24
Case 2: |wx(l)| <eg,

wi () =0,07", (25)

fo = —kw, () - kyQa ' o,07" | ki, k, >0,(26)
where 0<e<<1, 0,20, Q=28pl, +apv’ ,
and O = a(yd,.—pvy)—ppl.

Note that the slope measurement w, (/,¢) is used as

input to the velocity control law (23) and the force
control laws (24), (26) to dissipate energy. Lee and
Mote (1996) and Li et al. (2002) presented
experimental results for controlling the vibrations
with the slope w,(/,7) as input signal for an axially

moving string system.
For the case 1, substituting (23)-(24) into (19) yields:
V(< — CoUé (w, + vswx)zdx +J.é widx)
to—{a(yd,—pr)=ppl tniwi ()
+ (=D adniwi()
B+ av)T,0)+ fo 12 w2 D)
~@fp v, +apv]) mw; (1) —ankw} (1)

—amw, ()—2— 27
0”71Wx(l)
2 /
where ¢, = min{acv +pp—ay, - s, s BT min
72

_(ﬂl-i_%J (Tiv)x,max _%(Ts)t,max —Zﬁ l(cv72 +73)} .

The control gains 7, and k, from (27) can be

chosen to satisfy

(w=Dad i +{(B1+av)T,()+ folv? [~amky <0
(28)

Also, for the case 2, substituting (25)-(26) into (19)

yields:

V)< - co(jé(w, +vw, ) dx +Ié widx)

to -0, +{(Bl+av)T,(1)+ Bp V2 &>

~lak i, +ap?) o0 w.0)

{2 -(w-Yad,}c,0™". (29)
The control gains k; and k, from (29) can be
chosen to satisfy

oy =a Qo v +apvy) (30)
ky>2(w-)ad, Q™
HBlrav)T,()+ pp 2|00 (31)

From the above results, i.e., (27)-(31), the following
is then obtained:

V(1) < —co(j;(w,+vswx)2dx+j;w§dx) . (32)

Thus, the functional V(¢)
nonincreasing and is a Lyapunov function, since

given by (13) is

V(f) is negative semidefinite. Hence, it can be
concluded that all the signals in the closed loop



system are bounded.
4. STABILITY ANALYSIS

The boundary control laws (23)-(24) and (25)-(26)
show that V() is negative semidefinite, ensuring

the stability but not the asymptotic stability. In this
section, the asymptotic stability of the axially moving
strip under the boundary control laws is proved.

In other to analyze the asymptotic stability of the

system (4)-(5), the state space 3 of the system is

defined as follows:

4
3={(W, w,w(),w, (D) [we Hywe L2 w(l),w,(I) € R},
where the superscript 7 stands for transpose. The
spaces L, and H} are defined as follows:

2l {f:[O,l]—)R \ J(ﬁfzdx<w},

- {feL2|f’,f”,~«,f(")eLz,andf(O):O}.

In the space I, the inner-product is defined as

follows:
A

(22)5 = 3 Jo o+ Tow, 5,
+%(mcwt O, (D) + kDD, (33)

where z = (w, w, w(),w, ()", z = (w,w,w(l),w,(I)) €3 .
The norm induced by the inner-product (33) is
equivalent to V(¢) in(8),i.e.,

4 2
Vo(0=(z.2) =[5

_1 ! 2 11 2
= [oPOwew)? e+~ [ T (0w dx

+%mcwt2 (7,0) + %kcwz (1,1). (34)

the

s Vxt s xx 2

. d
By using E(Wt FV W) =w, +2v W, +viw

system (4)-(5) can be rewritten in the following
abstract form.

z=Az+F, z(0)e3J, 39%)

where z=(w,w, w(l),wt(l))T €3 and the operator
A:3— 3 is an unbounded linear operator. From

(24) and (26), A and F in (35) are defined,
respectively, as follows:

Case 1: |wx(l)| >e,

0 0 0
4 a[ aj 4
—| T, — - i 0 0
L LA ple,
- 0 0 0 1
(0= o =) 0 —mk —md - pv)
ox x=/
0
and o -, (36)
- 0

m;'o,, (amw, (1)

Case 2: |w.()|<¢,

0 1 0 0
Lo0(. 0 B
Zlrn= - 0 0
, L K p e ,
4= 0 0 0 1
—m;\(d. - pv,
T = k) A
x|y +hkhQa™)
0
and 2 -p . 37
o
0

The domain D(A4) of the operator A is defined as
A
DCAY={ (0,3 w(D),w, (1) | we HE o e HY wil),w, (D) € R |
From (36) and (37), the followings are obtained:
Case I: |w. ()2 ¢,
(z.42) ;= ~ v, W2 (0) —c, [ (w, +vyw,) dx

~{men? +mky +(d. = pro i v LD <0.,(38)
where the control gains 7, and k, can be chosen
to satisfy

\mev? + ko +(d, = pu i v T, (f 0.
Case 2: |wx(l)| <eg,

<Z,Az>S = —v[T, (O)wi ©0) —c, Ié(wt + vswx)2 dx

- { ky — pv? - vSTS(Z)g(\/am@fl )_1} g\/am@fl

Aoa +d, - pv) 0,07 <0, (39)
where the control gains &; and k, can be chosen

to satisfy

-1
k> pv? +VSTS(Z)€(\,U,”@_1) and
by > (.~ pv)/(Qa™).

From (38) and (39), it can be concluded that the
unbounded linear operator A is dissipative. Hence,
A:D(A)c 3— 3 is an infinitesimal generator of

the linear process {T(t)},zo = { (@(1,0),B(r)) }tZO

on J, see Theorem 3.2, p. 92, of Walker (1980).
Note that the first component @(¢,0) is generated by

s(t)=Ays(t)+ Fy, s(0)=s,, (40)

where s =(w,w)" e(H} xI?),

0 1
A 4 0
A=] _ 0 0 4 |,and F:{ C }
' {0 a(TSEJ -r CV] -

Note also that @(¢,0)s,, is the strong solution of the
equation  s(¢)=Ays(t) for every
8o € D(4,) . Finally, the solution of (40) can be

written in the following variation of constant formula
(Pazy, 1983)

$(t) = D(1.0)so + [ | Pt TV Fy (1) d

evolution

(41

where @(¢,5) is the evolution operator associated



with 4, in the space (Hi X Lz) .

Theorem 1. Consider the system (4)-(5) with the
boundary control laws (23)-(24) and (25)-(26). If

there exist the positive values o, B, 7;, i=123,
m, ky, k,and k, such that

Zﬂcvl}()’

72

a>C, (acv+ﬂp—a71—

(04% (24
T, —| Bl+—=|(T, -=(T
{ﬂ s,min [IB 2 j( s)x,max 2( s)t,max

—2B1(c,y, +73)}>0,
W -Dadn +{(Bl+av)T,()+ fobv? |-ank, <0,
{mpv? +mky +(d, = poonf v, T,(D} 20,

-1
ky > max{ a ' pp v, +apvf), pvs2 +v, T, (l)g(ﬂam@*' j },

and

ky > max{d”_—p‘;s, (w-Dad,0™,
Qa”

HBLrav)T,0)+ poiv? fe2e,0),
then
[ widv—0

and J.é(w, +vswx)2dx—>0 as

t—>oo.

Proof: Denoting (41) as s(¢) = s(¢,5(0),0) , define a

two parameter family of map M (¢,0) on (H i x L*)
as

M(1,0)5(0) = 5(1,5(0),0), 0<t<oo,  (42)

where the mapping M (#,0) on (HixLZ) denotes
an evolution process (Walker, 1980, p. 12, p. 49).

Finally, (32) implies that the following integral has to
be finite, i.e.,

af, ||s(f)||iz;xﬁ di=cof M (’30)50”2;@2 dt
<V(0)-V(0)<oo . (43)
Thus, by Theorem 1 in Hong (1997), it can be
concluded from (43) that ||s(z)| i 0 as o,

i.e.,

Iéwidx—)O and Ié(w, +vw ) dx—0 as

t—>oo.

5. CONCLUSIONS

In this paper, a robust boundary control scheme has
been investigated to suppress the transverse vibration
of an axially moving steel strip in the hot-dip
galvanizing line. Due to the gravitational force added
to the tension of the strip and the eccentricity of the
support roll, which causes a periodic excitation, the
tension variation of the strip is considered as a
spatiotemporally varying function. In the traveling
strip with fixed boundary conditions, the elements

that cause the increase of the total mechanical energy
are the traveling wave impinging on the right
boundary, the time rate of the tension, and the
distributed external force. The distributed external
force due to the aerodynamic excitation from the air
knives and air cooler is treated as disturbances. By
using the robust boundary feedback control laws
proposed, the asymptotic stability of the axially
moving strip has been obtained through the Lyapunov
analysis and the semigroup theory.
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