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Abstract: This paper presents a new approach to design a digital PID controller for
a given LTT plant. By using the Tchebyshev representation of a discrete time transfer
function and some new results on root counting with respect to the unit circle, we
show how the digital PID stabilizing gains can be directly obtained by solving sets
of linear equations. This solution is attractive because it determines the entire set
of stabilizing PID gains constructively if exists, Using this characterization of the
stabilizing set, we present solutions to two design problems: a) Maximally deadbeat
design where we determine the smallest circle within the unit circle wherein the closed
loop characteristic roots may be placed by PID control, b) Maximal delay tolerance-
where we determine the maximal loop delay that can be tolerated under PID control.
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1. INTRODUCTION

There is renewed interest in PID controllers be-
cause of two reasons. First, they are extensively
used in applications in all industries (Astrém
and Hagglund, 1995) and second, modern design
methods are inapplicable to PID controller design
due to their inability to accommodate fixed order
or structure (Dorato, 2000). As a result there
is much that remains to be done to modern-
ize PID design methods over those developed in
the 1940’s namely, Ziegler-Nichols and its varia-
tions (Goodwin et al., 2001).

Recently, the problem of stabilizing a continuous
time linear time invariant (CTLTI) system by
using a PID controller was solved (Datta et al.,
2000). The complete set of stabilizing controllers
was found by developing a generalization of the
Hermite Bieler Theorem and applying it to the

problem. The result characterized the stabilizing
set as the solution of a set of linear inequalities
parametrized by the proportional gain.

In this paper, we consider a discrete time linear
time invariant (DTLTI) plant to be controlled by
a digital PID controller. First, the complex plane
image of a real polynomial or rational function
over a circle of radius p centered at the origin, is
determined and expressed in terms of Tchebyshev
polynomials of the first and second kinds. For a
mathematical treatment of Tchebyshev polynomi-
als (Pélya and Szegd, 1976; Mansour, 1992), they
are used in a control problem related to discrete
time systems. In terms of this Tchebyshev repre-
sentation a new formula has been developed for
root counting with respect to the unit circle. This
formula which differs from the root counting for-
mulas given in (Yamada and Bose, n.d.; Yamada



et al., 1998) and is an extension of an initial result
presented in (Keel and Bhattacharyya, n.d.), and
constitutes the generalization of Hermite Bieler
type results for Schur stability. We apply these
results to the PID stabilization problems and
show how the entire set of stabilizing gains can
be found by linear programming after a suitable
reparametrization. The solution shows that the
stabilizing set for any DTLTI plant, when it is
nonempty, consists of unions of convex polygons
in the PID gain space.

Our direct solution should be contrasted with the
recent result in (Xu et al., 2001) where the set of
digital PID stabilizing gains has been determined
by applying the bilinear transformation, using the
CTLTI results of (Datta et al., 2000) followed by
inverse transformation back to the discrete time
domain. The direct solution given here allows us
to formulate and solve design and performance
problems in a transparent fashion whereas the
bilinear transformation does not. Specifically we
solve two design problems here which are not
tractable by the bilinear transformation. The first
problem is related to deadbeat control wherein
one places all closed loop characteristic roots at
the origin so that the transients are zeroed out
in a finite number of steps. In general, deadbeat
control is not possible using PID and a reason-
able goal is to place the closed loop characteristic
roots as close to the origin as possible so that
the transient error decays quickly. Such designs
have been advocated in the literature on sampled
data control systems (Ackermann, 1985). We show
how the stabilization solution obtained can be
refined to give a constructive determination of
such “maximally” deadbeat designs. The second
problem involves the determination of the maxi-
mum delay in the loop that a given plant under
PID control can be made to tolerate. We show how
our solution can also be extended to determine
this maximum delay for a given DTLTI plant.

2. PRELIMINARIES

Consider a feedback system consisting of a SISO
DTLTI plant G(z) and the unity feedback DTLTI
controller C(z). We write

N(z) Ne(z)
D(z)’ Dc(z)
The closed loop characteristic polynomial is

II(z) := Dc(2)D(2) + No(2)N(2)
and a necessary and sufficient condition for sta-
bility of the closed loop control system is that
the characteristic roots, namely the zeros of II(z)
have magnitude less than unity. This condition is
commonly referred to as Schur stability of II(z).

G(z) = C(z) =

The stabilization problem can be stated as that
of determining C(z) so that for the given G(2),

the closed loop characteristic polynomial II(z) is
Schur. For a fixed structure controller, such as
a PID controller, C(z) is characterized by a set
of gains x and must be chosen to stabilize II(2)
if possible. A useful characterization of S should
allow the designer to test the feasibility of impos-
ing various performance constraints and checking
their attainability with the controller parameters.
Thus if P; represents the set of controller parame-
ter values x attaining a performance specification,
the designer should be able to constructively de-
termine S N P;, if it is nonempty, the subset of
S attaining specifications. We shall show how the
stabilizing set S and the performance specifica-
tion sets SN P; can be constructively determined
for the case of digital PID controllers and two
different specifications. This solution depends on
certain root counting formulas which we need to
develop.

3. TCHEBYSHEV REPRESENTATION AND
ROOT CLUSTERING
Let us consider a polynomial

P(z) =apz" +---+ag (1)

with real coefficients. Then
P (pe’’) = R(u,p) + jV1—u?T(u, p)

=: P(u, p)
where
R(u, p) = ancp(u,p) + -+ - + arc1(u, p) + ag
( )—ansn(u,p)+---+a131(u,p)
I
el ==E2, k=12 2
crp1 (u) = —ucg (u) — (1 — u?) sg(u), 3)
for k =1,2,--- (Keel and Bhattacharyya, n.d.).

R(u, p) and T'(u,p) are polynomials in u and p.
The complex plane image of P(z) as z traverses
the upper half of the circle C, can be obtained by
evaluating P.(u, p) as u runs from —1 to +1.

Let Q(z) be a ratio of two real polynomials P;(z)
and P»(z). We compute the image of Q(z) on C,
as follows. Let

Pi (z)|Z=7pu+jp\/m = Rl(ua p)
+jv1—u?Ti(u,p),
for 4 = 1,2. Then

P1 (Z
P2 (Z)

~—

Q)= pugjpvi=ez =
F=oputae “ z2=—putjpvV1—u?

P (Z)Pz (2_1)
Py(2)Py (271)

z=—pu+jpV1—u?
R(u,p)

(Ry (u, p)Ra(u, p) + (1 — u2) Ty (u, p)Ta(u, p)




T(u,p)

+J\/— (T (u, Zp )Ra(u,p) — R12(U7§)T2(U>P))
R3(u, p) + (1 — u?) T2(u, p)
=: Qc(ua P)- (4)
4. ROOT COUNTING FORMULAS
In this section, we state some formulas for count-
ing the root distribution with respect to the circle
C,, for real polynomials and real rational func-
tions. These formulas will be necessary for our
solution of the stabilization problem but are also
of independent interest. They represent general-
izations of earlier results obtained by us in (Keel
and Bhattacharyya, n.d.) for the unit circle.

Theorem 1. Let P(z) be a real polynomial with
no roots on the circle C, and suppose that T'(u, p)
has p zeros at © = —1. Then the number of roots
i of P(z) in the interior of the circle C, is given by

i— %Sgn [T(l’)(—l,p)] (Sgn [R(-1,p)]+

k

(2 S (—1)iSgn [R (4,0)] (%)

=1

L (~1)**+1Sgn [R<+1,p)1)-

The result derived above can now be extended to
the case of rational functions. Let Q(z) = 2—8
where P;(z),i = 1,2 are real rational functions.
Let R;(u, p)+jv1 — uT;(u, p),i = 1,2 denote the
Tchebyshev representations of P;(z),7 = 1,2 and
Qc(u,p) denote the Tchebyshev representation
of Q(z) on the circle C,. Let R(u,p),T (u,p) be
defined by:

R(u,p) =
T(ua p) =T (U, p)R2 (U, p) - R (u) p)T(’LL, p)
Suppose that T'(u, p) has p zeros at v = —1 and

let t; - - -t denote the real distinct zeros of T'(u)
of odd multiplicity ordered as follows:

1<t <ty <--- <t <+1.

Theorem 2. Let Q(z) = ?—8 where P;(z),i =

1,2 are real polynomials with i; and iy zeros

respectively inside the circle C, and no zeros on
it. Then

in =iz = 3o [7(=1,p)] (Sen [R(-L. )]
+22

T (~1)*+Sgn [R<+1,p)])-

1)’Sgn [R (;, p)] (6)

5. PARAMETER SEPARATION AND
STABILIZING SET COMPUTATION FOR
DIGITAL PID CONTROLLERS

In this section, we give a general parametrization
of PID controllers in transfer function form. These

Ry (ua p)R2 (u7 p) + (1 - u2)T1 (U, p)T2 (ua p)

will be used in the sequel to compute the stabi-
lizing set. Similar parametrizations may also be
achieved for PI and PD controllers. The general

formula of a discrete PID controller is:
D 22—

Cle) = z—1 * T z -
(K + Ko+ 5¢) 2 4 (K - 20) s+ 5
2(z—1) '
We use
KQZZ +K12+K0
= 7
C(s) = = (7)
where Ko+ Ki + K
Kp=-Ki~2Ko, Kr=—"—"0—"",
Kp = KoT.

The main idea is to construct a polynomial or
rational function such that the controller param-
eters are separated as much as possible in the
real and imaginary parts. By applying the root
counting formulas to this function, we can often
“linearize” the problem. We emphasize that other
root counting formulas such as Jury’s test ap-
plied to these problems result in difficult nonlinear
problem, which are often impossible to solve. In
this section we present a complete development
along with an example for PID controllers.

Consider the discrete plant P(z) = gJé)l with
N(z), D(z) being real polynomials of deg[D(z)] >
deg[N(z)] with the PID controller:
K2’ + K K
C(z) = =22 ;(fz _li;“ 0
The characteristic polynomial becomes

0(z) =2(z —1)D(z2)

(®)

Multiplying the characteristic polynomial by 2N (271),
we have

z7'6(2)N (z7') = ( = 1)D(2)N (271)

+ (K22 + K1 + Koz ') N(2)N (7). (10)

Recall the Tchebyshev representation, and the

facts that
z=e% = —u+j\/1—u? (11)
2l =e 90 = —u—j\/1—u? (12)
we have

_1(5 Nz)

(
—(u+1)Pi(u) — (1 —u?) Py(
—[(Ko + K2) u — Ki] 3(“)

+JV1—UZ[ 1) P2 (u) + Pyi(u)
(K2 — Ko) Ps(u)]

:R(U,Ko,Kl,Kz) +j\/ 1- u2T (U,K(),Kg)

where



P (u) = Rp(u)Rn(u)

Py(u)=Rn(u)Tp(u) — Tn(u)Rp(u) (13)
P3(u) = R (u) + (1 — u®) Txr(u).
Now let K3 := Ky — Kj.
Kp=-K, - 2K, K
Kp = K,T.

_ Ko+ K1+ K>
R

Hence we rewrite R (u, Ko, K1, K>) and T (u, Ko, K2)

as follows.
R(u,Ko, K1,K>2) = —(u+1)Py(u)
- (1-2*) Py(u) — [(2K> — K3) u — K1] P3(u)
T (u,K3) = Pi(u) — (u+ 1) Py(u) + K3P3(u)

We observe the parameter separation achieved
above: K3 appears only in the imaginary part
and K, K>, K3 appear linearly in the real part.
Thus by applying root counting formulas to the
rational function on the left, and imposing the
stability requirement yields linear inequalities in
the parameters for fixed K3. The solution is com-
pleted by sweeping over the range of K3 for which
an adequate number of real roots tj exist. We
illustrate with an example.

FEzxample 3.
1
G = 70
Then
Rp(u) =2u® —1.25,  Tp(u) = —2u
Ry(u)=1, Tn(u)=0

Py (u) = 2u® — 1.25, Py(u) = —2u, P3(u) = 1.

Recall eq. (10). Since G(z) is of order 2 and C(z)
is of order 2, the number of roots of §(z) inside the
unit circle is required to be 4 for stability. From
Theorem 1,
ii — 2 = (ig +in,.) — (1 +1)
——— N———

21 2
where i5 and iy, are the numbers roots of §(z)
and the reverse polynomial of N(z), respectively.
[ is the order of N(z) and 1 came from the term
2~ L. Since the required is is 4, iy, = 0, and [ = 0,
11 —I5 is required to be 3. To illustrate the example
in detail, we first fix K3 = 1.3. Then the real roots
of T (u, K3) in (—1,1) are —0.4736 and —0.0264.
Thus, Y = {-1 —0.4736 —0.0264 1}. Fur-
thermore, we have Sgn[T'(—1)] = 1. From The-
orem 1 and ¢; — i = 3, we have the only one valid
sequence for

%Sgn[T(—l)] (Sgn[R(—l)] — 28gn[R(—0.4736)]

+2Sgn[R(—0.0264)] — Sgn[R(l)]) =3.

Sgn[R(-1)] Sgn[R(-0.4736)] Sgn[R(-0.0264)]
1 -1 1
Sgn[R(l)] 2 (21 - 22)
-1 6

From this valid sequence, we have the following
set of linear inequalities.

-13+ K +2K>>0
—0.9286 + K; + 0.9472< 0
1.1286 + K1 + 0.0528 K2 >0
—0.2+ K; — 2K, <0.

This set of inequalities characterize the stability
region in (K;, K>) space for the fixed K5 = 1.3.
By repeating this procedure for the range of Kj,
we obtain the the stability region shown in the left
of Figure 1. Consider the following relation.

Kpl [ 271 [Xo
Kl|l=|2 22| |K;
ko| |5 T T K
T [&

= - £ _= K,
7L 1k

Using this relation, we plot the regionin (Kp, K1, Kp)

space in the left of Figure 1.

Fig. 1. Stability regions in (K, K2, K3) space
(left) and (Kp, K1, Kp) space (right)

6. MAXIMALLY DEADBEAT CONTROL VIA
PID CONTROLLERS

An important design technique in digital control
is deadbeat control wherein one places all closed
loop poles at the origin. If this is used in con-
junction with integral control the tracking error
is zeroed out in a finite number of sampling steps.
Deadbeat control requires in general that we be
able to control all the poles of the system. How-
ever, such a pole placement design is in general
not possible when a lower order controller is used.
Thus, we are motivated to design a PID controller
that places the closed loop as close to the origin as
possible. The transient response of such a system
will decay out faster than any other design and
therefore the fastest possible convergence of the
error under PID control will be achieved.



The design scheme to be developed will attempt to
place the closed loop poles in a circle of minimum
radius p. Let S, denote the set of PID controllers
achieving such a closed loop root cluster. We show
below how S, can be computed for fixed p. The
minimum value of p can be found by determining
the value p* for which S, = ¢ but S, # ¢, p > p*.
Now let us again consider the PID controller

_ K2z2 —|— Klz + KO
B z(z—1)

and the characteristic polynomial

C(z) (14)

§(2) = 2(z = 1)D(2) + (K22*> + K12 + Ko) N(2).

Note that

D(2)|,— — put jpvizaz = Bp(u,p) + jV1 = u?Tp(u, p
N(z)|z:—pu+]’pm = RN(u) p) +J \% 1 - U2TN(u,p

and

N (p2z_1) |z:—pu+jpm = N(z)lz:—pu—jpm

= Rn(u,p) — jV1 —vw?Tn(u,p).
We now evaluate
P22 16(2)N (p227Y) = g2zt
[2(z = 1)D(2) + (K22” + K12 + Ko) N(2)]

/

~

6(z)
N (p*27h)

over the circle C,
2,1 2,1
pz 5(Z)N (p z )|z:—pu+jﬂ\/1—u2

=—p’(pu +1)P(u, p) — p* (1 — u?) Pa(u, p)
— [(Ko + K2p*) pu — K1p*] P3(u, p)
+3V/1=u? [p*Pi(u, p) — p*(pu + 1) Pa(u, p)

+ (K2p* — Ko) pPs(u, p)]

where P (u, p), Px(u, p), and Ps(u, p) are defined
as in eq. (13). By letting

__ 2
we have Ky 1= Kzp” — Ko,

RGO A U Y =

=—p’(pu +1)P1(u, p) — p* (1 = u®) Pa(u, p)
— [(2K2p” — K3) pu — K1p°] P3(u, p)
+iV1—u? [p*Pi(u, p) — p*(pu + 1) P2 (u, p)

+K3pPs(u, p)]

To determine the set of controllers achieving root
clustering inside a circle of radius p we proceed as
before: Fix K3, use the root counting formula of
2, develop linear inequalities in K5, K3 and sweep
over the requisite range of Kj3. This procedure
is then performed as p decreases until the set of
stabilizing PID parameters just disappears. The
following example illustrates this scheme.

Ezxample 4. We consider the same plant used in
Example 3. Figure 2 (left) shows the stabilizing set
in the PID gain space at p = 0.275. For a smaller
value of p, the stabilizing region in PID parameter
space disappears. This means that there is no PID
controller available to push all closed loop poles
inside the circle of radius smaller than 0.275. From
this we select a point inside the region that is

Ky =0.0048, K; = —0.3195, K5 = 0.6390 and
Kp =0.3099, K1 = 0.3243, Kp = 0.0048.
Figure 2 (right) shows the closed loop poles that

lie inside the circle of radius p = 0.275. The roots
are 0.2500 £ j0.1118 and 0.2500 £ j0.0387.

Closed loop poles with selected gains
05

K K real

Fig. 2. Stability regions with p = 0.275 (left).
Closed loop poles of the selected PID gains
(right)

To illustrate further, we select several sets of
stabilizing PID parameters from the set obtained
in Example 3 (i.e., p = 1) and compare the
step responses between them. Figure 3 shows that
the maximally deadbeat design produces nearly
deadbeat response.

Maximally deadbeat response

Responses with arbirary stabilizing PID

2

output
-
output

0 5 10 15 20 0 5 10 15 20
time time

Fig. 3. Maximally deadbeat design (left). Arbi-
trary stabilization (right)

7. MAXIMUM DELAY TOLERANCE DESIGN

In some control systems an important design
parameter is the delay tolerance of the loop, that
is the maximum delay that can be inserted into
the loop without destabilizing it. In digital control
a delay of k sampling instants is represented by
2~ *. We use this to determine the maximum delay
that a control loop under PID control can be
designed to tolerate. This gives the limit of delay
tolerance achievable for the given plant under PID
control. Let the plant be



N(z)
G(z) = Do)’
We consider the problem of finding the maximum
delay L* such that the plant can be stabilized
by a PID controller. In other words, finding the
maximum values of L* such that the stabilizing
PID gain set for the plant

(15)

N(z
MG = zLD((z)’

is not empty. Let S; be the set of PID gains that
stabilizes the plant 2~ ?G(z). Then it is clear that

for L=0,1,---,L*

NE ,S; stabilizes 2°G(z), Vi=0,1,---,L.

We illustrate this computation by an example.

Ezxample 5. Consider the same example we used
before. Figure 4 (left) shows the stabilizing PID
gains when there is no delay (i.e, L = 0). The
right figure shows the stabilizing PID gains when
L = 0,1. As seen in the figure, the size of the set
is reduced as the delay increases.

L=0 L=0,1

Fig. 4. Stability region for delayed systems

In many systems, the set disappears for a large
value of L*. This is the maximum delay that can
be stabilized by any PID controllers. To illustrate
better, we fix K3 = 1. Figure 5 shows that the
stability region reduces when the required time
delay increases and for the system with the delay
L € (0,3) the region vanishes.

Stability region: K3:1.L:0 Stability region: K3:1,L:0,1

Stability region: K,=1,0.=0,1,2,3

, 0 -5 K o 02 04 06 08 1
P
[

Fig. 5. Stability region for delayed systems

8. CONCLUDING REMARKS

In this paper, we have given a solution to the
problem of stabilization of a digital control system
using PID controllers. The solution is complete
in the sense that a constructive yes or no answer
to whether stabilization is possible, is given and
in case it is possible the entire set is determined
by solving sets of linear equations. These solution
sets open up the possibility of improved and opti-
mal design using PID controllers. The questions
of loop shaping time domain response shaping
and robust designs are important candidates for
research.
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