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Abstract: In this paper, a definition of a class of rational function matrices called atype-1
matrix is given. Two illustrative examples show that the type-1 matrix can describe most
of linear physical systems. It is proven that the type-1 matrix satisfies two properties that
its characteristic polynomial in the ring F(z)[ 4 ] has no nonzero constant eigenvalues or
nonzero multiple factors in F(2)[ 4 ]. The author present some controllability criteria of
the linear systems whose characteristic polynomials have no nonzero multiple factors in
F(2[ +]. The applications of the type-1 matrix and system to structural controllability are
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1 INTRODUCTION

Consider alinear sy stem
X =AX+BU, Y=CX+DU, (1.1)

where XI R", UT R?, and YI R®. Let 7, 2, .., Z;be q
independently  variable parameters  (independent
parameters or paraemters for short). Let z=(z, .., z).
The domain of z is R'. RY is also said to be the
parameter space. Let F(z) denote the field of the
rational functions with real coefficients in the q
parameters z; , .., zg. A matrix M(z) is called a rational
function matrix (RFM) or a matrix over F(z) if each
entry in M(z) is a member of F(2). The system (1.1) is
called a rational function system (RFS) or a system
over F(z) if all the coefficient matrices A, B, C and D
are RFMs. Let F(z)[ 4] denote the ring of all the F(z)
coefficient polynomialsin .

The following two properties were introduced by Lu
and Wei (1991).

1Thiswork was supported by the National Natural Science
Fund grant 50177024

Definition: Let A be an n* n matrix over F(2). Then its
characteristic polynomial det( 4 I1-A)l F(z)[ 4]. The
martix A is said to be of Property 1 if m* {d R* |
det( 4 1-A)=0 has nonzero multiple roots}=0; A is of
property 2 if m* {d RA|det(r-A)=0}=0, where r is a
nonzero constant, m*{ .} =0 denotes that the L ebesgue
measure of the point set {.} iszero. Property 1 means
that the nonzeo eigenvalues of A have multiplicity 1
for aimost al zI RY. Property 2 means that a nonzero
constant r is not an eigenvalue of A for aimost al ZI RA.

Definition: An n* n matrix A =(a;) containing q
independent parameters z, ...z, ...z, Zn1, ..Zq IS
called atype-1 matrix if when i<j, either a;= a constant
o aj = &5 z and when i>j, a;=aj z, where
a j=a jj(Z+1, .., Z9) is arationa function in only zya, ..,
Zqinboth casesi<j and i>}.

It will be proven in Section 4 that the type-1 matrix is
of thetwo properties.

It is well known that many important properties of
linear systems such as stability and controllability
depend on their characteristic polynomials. Since
Properties 1 and 2 just are the ones about det(41-A) in

F@[ + ], they have an importent application to the



problem of structural controllability (see Section 6).
The type-1 matrix can describe most of linear physical
systems (see Section 2) although it is a class of RFMs.
Therefore, it is necessary to prove Properties 1 and 2 of
the typel matrix so as to analyze structura
controllability and observability of linear physical
systems. A linear system applied to engineering is a
physical system. Thus, the investigation may be of
significance from the viewpoint of physics.

In Section 2, the author presents three generic
examples to show that the type-1 matrix can describe
most of linear physical systems. Some lemmas are
derived in Section 3. It is proven in Section 4 that the
typel matrix satisfies the two properties. Some
questions are mentioned in Section 5. The structural
controllability criteria for the rational function systems
with Property 1 are stated in Section 6. In Section 7, as
an example, the controllability of a type-1 system (its
coefficient matrix A is atype-1 matrix) is analy zed.

It should be emphasized that there have been some
parametrizations: Lin (1974) introduced a structured
matrix (SM). A matrix is called an SM if each entry of
the matrix is either fixed zero or free nonzero where its
nonzero entries are considered to be mutualy
independent parameters. Corfmat and Morse (1976),
Anderson and Hong (1982), and Willems (1986)
proposed three kinds of matrices whose entries are
one-degree polynomials in independent parameters.
They are said to be one-degree polynomial matrices for
short. A matrix is caled a column-structured matrix
(CSM) if the different entriesin a column of the matrix
contain the same parameter factor, but the factors in
distinct columns are independent of each other
(Yamada and Luenberger (1985)). A matrix of the form
M=T+G is a mixed matrix if the 6nonzero entries of T
are algebraically independent over the field to which
the entries of G belong (Murota (1987,1998)). Lu and
Wei (1994) defined a class of RFMs with the form
A=(C+V)'U, where C=diag(z1,2,....z,), V and U are
two n" n matrices over F(zn:1,....Z), F(Za+1,...2Z9) denote
the field of rational functionsin z1,...Z, and z,..., Zs,
Zn+1,..Zq @€ ( independent parameters. The matrix is
here called the one (C+V)*U for simplicity.

According D the above definitions, SM, CSM and
(C+V)*U do not contain any nonzero constant entries,
but the type-1 matrix may contain. Generally, a type-1
matrix is not a one-degree polynomial matrix in
independent parameters, but it is an RFM. Clearly, it is
not a mixed matrix. For instance, let us consider a
type-1 matrix

Hzn+)zy 8 0
Gz + + -
¢Bt%, 23t .
323+2 22+9 T4

Obviously, SM, CSM, one-degree polynomial matrix,
mixed matrix or (C+V) U can not express it.

2. TWO KINDS OF PHYSICAL SYSTEMS

The following examples show that the type-1 matrix
can describe most of linear physical systems.

Example 1: Consider a linearized system consisting of
mechanical, electric, thermal, pneumatic, liquid level,
and hydraulic, etc., components in which there are n
energy storage elements. The initial conditions of the n
energy storage elements are considered to be
independent. This assumption is very mild since it is
satisfied in most linear physical systems.

One can choose the (angular) velocities of (inertia
moments) masses, the capacitor vadtages, the inductor
currents, the temperatures of thermal capacitances, the
air pressures of capacitances of vessels and the liquid
heads of capacitances of tanks, etc., as the state
variables of the system. One has the force (torque),
current, voltage, heat flow, air flow rate and liquid rate,
etc., balance equations (Ogate,1970)

I, $
—Xj a a"jj Xj +a birur (2.)
15 j=1 r=1

T Qeos

where a”I R AR b IR il {1,..n},l{1,..p};
z? .., 77, .., z" are the masses (inertia moments),

capacitances, inductances, and thermal, air and liquid
capacitances, etc., which are the parameters of n energy
storage elements. Let

XjZ] = Yij Y= (Y1 Yn)

.,X +§ b, a=(@",..ay)". (22

r=1

QJ°:

Then (1)) =aby (2.1) and (2.2). Since the initial
conditions are independent, det( ;)= 0 and

p— _1_

y=(,) a (23)
Wheni=j,y; = Xj zjlcan be written as

—y -1
Y. =Xz . (2.4)

Substituting (2.2) and (2.4)into (2.3)yields

X =AX+BU, A=(a), (2.5)
where g =a'ij Zi,a'ij =a'ij(zn+1,...,zq) is the

rational function in Zy,.., Zg which denote the
physical parameters of Q-n non-energy storage



elements. Obviously, the matrix aisatype-1 matrix.

Example 2: Consider a linear RLC network with n
energy storage elements whose network without
sources has not any capacitor-only loops or
inductor-only cut-sets. According to the circuit theory
(Kuh and Rohrer, 1965), the state equation is

2, 0 o diy &L dfly @Ey 0
g}+g 1?11 12’1 lnl-l_g.l
g = 9 : P _g o=
9
&im 2_¢ @n/Lm anﬁ“—m mr‘{Lm m By
‘:Vnﬂ Qdmal/qﬁa d 12/ G - mlnlcmﬂ'f}vm&
8\7” 5 é dm/q atrQ/Cn nr/cn g\h o]
(2.6)
where iq,---,i,,, are, respectively, the currents through
the mductors Ll, “+Lm s Vme1-Vy  the voltages
across the capacitors  Cpy,-.Cpp 5 @l R,
it {L-,n}, jT{L-.n}. Let
(L LGty Chh = (20 2,) -
Then, A=(g;),a; =ajj z . Obvioudly, there do not

exist any relations between z and ajj,i;=1--,n
Alisatypel marix.

3. SOME LEMMAS FOR P(1) INF(@)[I]

It is necessary to derive some lemmas before proving
that atype 1 matrix is of the two properties.

Let R denote the field of all the real numbers and
R{z1, -, Z4] denote the ring of al the real coefficient

polynomials in q parameters z,...,z;. R[z,...,zg] can be
simply written as Ry or R[Z], where z=(z,...,.7;). Let
Rz[1] denote the ring of the R; coefficient polynomials
in 1. The following lemma is a conclusion in the
algebraic theory.

Lemma 1. If a polynomial P(l) in RZI] can be
decomposed in F(2)[1], then P(l) can be decomposed
inRAl].

Let P(4) be an n-degree polynomia in F(2)[ 4]. If
P(A)=AM(4)0=m<n, (4, j(A)=1 j(4)=
Ja(A)ja(4) ds(4), Ji(ANF@L 4], degij(4)=
1,1=j=s, then j (4 ) iscaled the nonzero part of P( 4)
and jj( A) the nonzero factor. If j1(4)=j2(4), jo(4)

and j »( ) are called nonzero multiple factors.

Lemma 2: If P(l) is an irreducible polynomia in
F@[ 4] (i.e, P(l) can not decomposed in F(z)[ 4]),
then m*{zl R7|P(I) =0 has multiple roots} =0.

Proof: Since P(l) is irreducible, P(l) has no multiple
factors in F([ 4 1. Then, (P(I),P(1))=1, where

P(I1 )T F(2[l] denotes the derivative of P(I). Thus
m*{ zI Rq|(P(I ), P(1))t =0 by Lemma 2 in [1],

which implies m*{ zI R*| P(l) =0 has multiple roots}
=0. O

Lemma 3: let P(NT F(@[4]. P(I) has no multiple
factorsin F(2)[ 4] iff m*{ zI R%| P(I) =0 has multiple
roots} =0.

Proof: Sufficiency is obvious. It is only necessary to
prove necessity. Since P(l) has no multiple factors, we
let P(1) be irreducible. Then necessity holds by Lemma
2. Suppose P(1 )=f4(l)...fn(1), where h? 2, deg(f; (1))3 1,
fi(I1)l F(@[ 4] is irreducible and (1),f(1))=1, i},
h3ij2 1. Thus m*{zl R%| (fi(l),f;(1))* 1}=0 by Lemma
2 in [1], which means that m*{ zI R* | P(I)=0 has
multipleroots}=0. O

Lemma 4 (i) m*{Z R® | det(41-A)=0 has nonzero
multiple roots} = O iff det( 4 1-A) has no nonzero
multiple factors in F@[ 4 ]; (i) m{d R
[det(r1-A)=0}=0 iff det(rl-A) is a nonzero member in
F(2), wherer is a nonzero constant.

Proof : (i) Clearly, thisis the spedal case of Lemma 3.
(ii) For necessity, if det(rl1-A) is a zero member of F(2),
then m*{Z R? |det(rl-A)=0}1 0. For sufficiency, if
det(rl-A) is a nonzero member of F(2), it is obvious that
m*{Z R%|det(r]-A)=0}=0. O

According to Lemma 4, in other words, the matrix A is
said to be of Property 1 if det( 4 1-A) has no nonzero
multiple factors in F(2)[ 4]; A is of property 2 if
det(rl-A) is a nonzero member in F(z), where r is a
nonzero constant.

4. TWO PROPERTIES OF TYPE-1 MATRIX

Theorem 1. Consider (in 4 )
P(l)=1"+a " a4l ta,
where the coefficient a=ay(z) is a polynomial in g
parameters  zj,---,Zg and in ay(z) there are no

the polynomia
+oota ™ k4

nonzero constant terms, 1£kEn. Then P(r) is a



nonzero member of F(z), where r is a nonzero
constant.

Proof: i) If a;=a,=---=a,=0, P(I )=1" and any
nonzero constant is not its root. ii) Let P(1)=1"F(l),
where f(1)=I"M+al ™™+ +a, 8w m® O OEM<n .

Then P(r)=r"F(r) =M™ M+ar™ ™ va .

Since ay, 1£kEn, does not contain any nonzero constant

terms, a;r" ™ +.. +a,., is not a nonzero constant. Since

r-m is a nonzero constant but
n-m-1 n-m- 2 1

ajr +a,r +etan el tapem a

nonzero constant, P(r)=r™f(r)1 0. 0O

Theorem 2 (in 4 )
PI)=1"+al ™+ +a ™K+ va, | +a, |

where the coefficient ayx =ay(z), LEKEn , is a

Consider a polynomial

polynomial inq parameters zj,---,Zq . If any term

r

brzg[lzéz ,,,qu

of ay satisfies that

R q
n1 {0y, 1£i£q83 131
i=1

and by is a constant including zero, then P(lI ) has no
nonzero multiple factorsin F(2)[l ].

Proof: i) If a;=a,=---=a,=0, P(1)=1". The

theorem is true. ii) Let P(1)=1"f(I), where
F)=1"+al ™™+ ta a8y, P Q 0EM<Nf(l)
is the nonzero part of P(l ). If f(1) is irreducible,
thistheoremistrue. If f (1) is a reducible polynomial
in F()[I'], f(1) is aso reducible in R,(I) by
Lemmal. Let f(lI)=Ff.()--fn (1), where 2EhEn-m,
f0)T R[] is irreducible, 1£j£h. Since the
leading coefficient of f (1)
coefficient of f ;(l) isanonzero constant. It is clear

is one, the leading

from the assumption 1£r +ro+...+rg that a,(z) has no
nonzero constant term. So it is impossible that each of
the coefficients of () is a constant. Conversely,
supposethat f (1) has nonzero multiple factors. Then
there exist at least two integers i,j,1Ei,JEh,i 1 j
such that fi(l)=f;(), which implies that P(l )
has at least one nonzero coefficient ay(z)1EKEn,
containing at least one term which does not satisfy

ri {O]} This contradicts the assumption. [

Lemmab: Letthe n" n matrix A= () satisfy that
when i< j, either ajj=constant or & =a'jj z and
when i3 ja; =a’jjz, where aj is a constant
including zero and  z,---,z,, are n parameters (@=n).
Then in its characteristic polynomia det(l I-A)=

I"+a 1™+ +a, I +a,, the coefficient

—2h. . SNtk
ak =a tal.z....kzi1 z2g

where EKEn,

ijT{Lnhijtin(it h), 1€ ,hEKbij .

k
isaconstant, r, T {0}1£ £k & 1 2 1.

=
well-known  that

Proof: It s det(l 1-A)=

n
1"+ & (-1¥D I "X, where Dy is the sum of all
k=1
the principal minors of order k in AL1£ k £ n; each of
principal minors of order kin D, can be denoted by

?11'2 alllk =

det¢ : H

gaikil aikik ﬂ
where 1£iy <ip <---<ip £n Since
aiih :a'iih Z (|13|h) and when ij<ih,a.iih =

constant or a;; =a'j; z , the conclusion is obvious
] ]

i
I

by the definition of determinant. [

Remark 1: Obviously, the coefficient ax in Lemma 5
does not contain any nonzero constant terms.

From Theorems 1, 2 and Lemma 5, Theorem 3 is
immediate.

Theorem 3: The n” n matrix A with n parameters
zq,---,z,(q=n) inLemma5 is of Properties 1 and 2.

Theorem 4: The N~ N typel matrix A with g
parameters z1,--+,Zq(q>n) is of Propaties 1 and 2.

Proof: Arbitrarily, e fiX (Zue1.Z)= (Zner, - Zq) =

a constant vector and Theorem 3 holds. This means
that Theorem 4 holds. (1



5. QUESTIONS

It has been proved in Section 4 that a type-1 matrix
satisfies Properties 1 and 2. In this section, the author
would like to mention some relevant questions.

We know that many matrices are of Property 1 and/or
Property 2. It was derived (Murota [7]) that if a mixed
matrix has an eigenvalue which is transcendental over
the subfield K, then it is a simple root, which is similar
to Property 1. It is well known that SM and CSM are of
Property 1 and it is not difficult to prove that they
satisfy Property 2. The matrix (C+V)*U defined in [9]
is also of the two properties. The type-1 matrix satisfies
the two properties and can describe most of linear
physical systems. Then, we have some questions. Does
any linear physical system satisfy the two properties (if
al of its physica parameters are regarded as
independent parameters)? Are the two properties two
fundamental properties depending on the structures of
linear physical systems? The author hopes that the
questions will invite further discussion.

6. SOME CONTROLLABILITY CRITERIA OF
RFSS WITH PROPERTY 1

Let the system described by (1.1) be an RFS, T=
(B,AB,-,A™1B) and T,=(CT,ATCT ..., (A™)TcT)T
be its controllability and observability matrices
respectively. Since they are dependent on z, T and T,

aredenoted by T(z) and Ty(z). Let
N, ={z1 R9jdet(T(2T7(2) =0}

N, ={z1 RYdet(T] (2)To(2)) =0}

Let S be a point set and m*S denote the Lebesgue
measure of the set S.

Definition: RFS (1.1) is structuraly controllable if
m* N, =0; otherwise, it is not structurally controllable.

RFS (1.1) is structurally observable if m* N, =0;

otherwise, it is not structurally observable. (This
definition was introduced in [1]).

Definition: Since T(2) and Ty(z) are two matrices over
F@, det(T@T @) F(@ and det(To'(2)To(@)I F(@).
RFS (1.1) is controllable over F(2) if det(T()T'(2) isa
nonzero member of F(z)(i.e.,T(Z) has n column vectors
which are linearly independent over F(z)); otherwise, it
is uncontrollable over F(z). RFS (1.1) is observable
over F(2) if det(Ty'(2)To(2) is a nonzero member of
F(2); otherwise, it is unobservable over F(z2).

Lemma 6: Let f(z) T F(2). If f(2) is a zero member of
F(2 (simply f(2)=0), then f(z)=0 for all zI RY;if f(2)

is a nonzero member of F(z) (simply f(z) 10 ),
m*{zT Rq|f(z):0}:0.

Thislemmais obvious form algebraic theory.

Remark 2: By the above definitions and Lemma 6, the
structural controllability (structural observability) is
equivalent to the controllability (observability) over
F(z) for RFS (1.1).

Let M bean n"n matrix over F(2. M is said to be
reducible over F(z) or areducible matrix over F(z)
if there exists some nonsingular matrix P over F(2
such that

_ M ..
PMPlzg ' z

21 M 2@

where M, isan n ' n matriX, i=121£n <n;
otherwise M is irreducible over F(2) or an irreducible

matrix over F(z). (Note: The words “over F(2)" ae
often omitted for simplicity).

The proofs of the following theorems are omitted
because of the length limitation.

Theorem 5: Let A be an N° N matrix over F(2).
(A B) is controllable over F(z) for any n" m
matrix B over F(z), B! 0, iff A isirreducible.

Theorem 6: Let A=diag(A,A,), B=(B{,B;)", where
A and B are, respectively, " n; and n ' m
matrices over F(z), i=1,2, and the polynomias
det(I1- A) ad det(11- A) are relatively prime.
(A,B) is controllable over F(2) iff (A,B,) is
controllable over F(2), i=1,2.

Corollary 1. Consider A=diag(As,....A), B=
(BT,...,BkT)T , Where Aj and B; are respectively an
n,”n; ad an n,~ m matrices over F(z), i=1-k,
det (11- A) and det (11-A)), it j, ae relaively
prime. Then (A,B) is controllable over F(z) iff (A;,B;)

is controllable over F(z), i=1,---,K.

Theorem 7: Let the n” n matrix A be of Property 1 and

B an n” m matrix over F(z). Then there exists some

invertible matrix P over F(2) such that
PAP=diag[Ag, Ay, Al,

PB=(B} B, B 1",

where Ag isan ng” ny nilpotent matrix and A; (1£i£k) is
ann;" n; irreducible matrix over F(2), B; (OELi£k) is an



N’ m matrix over F(2), n=ng+ny+...+ny.. Then, (A,B) is
controllable over F(2) iff (Ag,Bo) is controllable and
Bi O, 1£i£k.

7. APPLICATIONS TO STRUCTURAL
CONTROLLABILITY

Since the structural controllability is equivalent to the
controllability over F(z), it is only necessary to discuss
the controllability over F(z) for an RFS.

Example 3 Consider an RLC network shown in Fig.2
after the references, whose state equation is

X = AX +By,,

where X=(X1"X,")", B=(B1",B,")" , Ve is the voltage of
a voltage source,

A:diag(AllAZ)! xl:(vll V2, il)T! XZ:(V3, i21 i3)T1

geo 0 76 geo z 09
A0 2% 25ATC % -2% 2%

&z -z 05 &0 7z -zz%y
a0 o o
T = ¢ =
B =¢0+ By=¢z+,
&z: 5 &0

Ls % . Rz
I3

Fig.2

)
over F(z) and A is atype-1 matrix by the definitions.
So, A is of Properties 1 and 2.

Clearly, A=diag(A1,A2) and g = §é31(',5 are two matrices
B,

Obviously, det (11 - A) isan irreducible polynomial in
F(2)l1(i=12). Thus A and A, are two irreducible
matrices over F(z).

Since A is a typel matrix with Property 1, A is
irreducible over F(z) and B, * O(i=12), (AB) is
controllable over F(2) (that is, structurally controllable)
by Theorem 7.

In addition, some applications of Property 2 to
structural  controllability and observability were
presented in the paper (Lu and Wei,1991).
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