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Abstract:  An adaptive predictive control methodology is applied for a fossil fuel boiler 
control.  The control algorithm takes advantage of a neuro-fuzzy identifier system for 
prediction of the boiler response in a future time window.  An optimizer algorithm based 
on evolutionary programming technique (EP) uses the identifier-predicted outputs and 
determines input sequence in a time window.  The present optimized input is applied to the 
plant, and the prediction time window shifts for another phase of plant output and input 
estimation.  The neuro-fuzzy identifier is trained to provide a good estimation of boiler 
outputs.  Neuro-fuzzy rules and membership parameters are trained based on the data log, 
applying genetic algorithm and back-propagation, respectively.  The obtained intelligent 
control system is highly structural and applicable on different boiler systems.  Copyright 
©2002 IFAC 
 Keywords: Boilers, Intelligent Control, Predictive Control, Identifiers, Fuzzy Systems, 
Power Plant Control. 
 
  

1.  INTRODUCTION 

Control of a fossil fuel boiler is addressed in classic 
and modern control approach extensively.  It was 
always a challenge in adaptive and optimal control 
systems to deal with the Multi-Input Multi-Output 
(MIMO) characteristic of a boiler system.  A wide 
range of low to high power operation of the power 
plant complicates the control method based on linear 
or non-linear model of the boiler.  On the other hand, 
intelligent control methodology has proven to 
overcome these obstacles.  An intelligent control 
system may be equipped to an appropriate training 
algorithm that adapts the control system to a wider 
operating points, and plant changes.  

Among the intelligent control systems, model 
reference control is widely used in different 
structures (Åström and Wittenmark, 1989).  The 
complexity of this approach and interconnection of 
plant, identifier and controller in a MIMO system, 
suggests the need for more portable intelligent 
control system.  Fuzzy control approach overcomes 
the practical implementation problem due to 
complexity of the power unit mathematical model 

(Garduno-Ramirez and Lee, 2000).  In addition, 
optimization techniques, such as Genetic Algorithm 
(GA) has opened new avenue in training and 
adapting control systems to the plant variation 
(Dimeo and Lee, 1995).  Predictive control has been 
applied in process control extensively (Tolle and 
Ersu, 1992, Saint-Donat, et al., 1994).  In this paper, 
an intelligent adaptive control system is developed 
by using a highly trainable Neuro-Fuzzy Identifier 
system (NFI) and Evolutionary Programming 
Optimizer (EPO) in a boiler control problem and is 
studied in a wide range of operating condition by 
training NFI.  Boiler measured data are used by GA 
and error back-propagation methods in this training. 
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Fig. 1.  Neuro-Fuzzy predictive control. 
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  2.  INTELLIGENT ADAPTIVE PREDICTIVE 
CONTROLLER 

In predictive control approach, control system 
anticipates the plant response for a sequence of 
determined control action in future time horizon 
(Clarke, 1994).  The optimal control action in this 
time horizon is a good choice to minimize the 
difference between desired and predicted responses.  
Model-based Predictive Control (MPC) takes 
advantage of this prediction.  It is originally 
developed for linear model of the plant that provides 
the prediction formulation.  The MPC was developed 
for limited classes of nonlinear systems.  In some 
cases, on-line estimation provides parametric 
estimation of nonlinear process that can be used for 
an MPC methodology.  Neuro-fuzzy system, as 
universal approximator, may be considered for 
identification of nonlinear systems.  This nonlinear 
mapping is used for process output prediction in 
future time horizon. 

The structure of intelligent adaptive predictive 
control is shown in Fig. 1.  Prediction system is 
formed by neuro-fuzzy identifier to generate the 
anticipated plant output for a future time window, 

21 NtN ≤≤ .  The fuzzy rules and membership 
functions of this identifier can be trained off-line by 
the actual measured data of boiler.  The future 
control variable for this prediction stage is 
determined in an optimization algorithm for the time 
interval of uNtN ≤≤1 , such that 2NNu ≤ , 
minimizing the following cost function: 
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where )(ˆ kty +  is predicted plant output vector 

which is determined by NFI for time horizon of 
21 NkN ≤≤ , )( ktr +  is desired set-point vector, 

)( ktu +∆  is predicted input variation vector in time 
range of uNkN ≤≤1 , )(ty  and )(tr  are present 

plant output and set-point vectors, respectively.  The 
optimization block finds the sequence of inputs to 
minimize cost function in (1) for future time, but 
only the first value of this sequence is applied to the 
plant.  This predictive control system is not model-
based and is not using the mathematical model of the 
plant.  Therefore, the optimization can not be 
implemented by conventional methods in MPC.  The 
search engine based on EP is used to determine the 
optimized control variable for the finite future 
horizon.  The competition search is performed on 
initial randomly chosen vectors of input deviation in 
a population and their mutated vectors.  The mutation 
and competition continues to achieve desirable cost 
value.   

2.1   Neuro-Fuzzy Identifier 

Neuro-fuzzy identifier technique is chosen for 
identification in predictive control loop 
(Ghezelayagh and Lee, 1999).  The structure of a 
MIMO neuro-fuzzy system, with m inputs and n 
outputs, is shown in Fig. 2.  The ith input and the jth 
output retain pi and qj bell-shaped membership 
functions, respectively. The number of possible rules, 
with IF-THEN format, is ∏ =

=
m

i ip
1

η . 

The first layer of identifier network represents the 
input stage that provides the crisp inputs for the 
fuzzification step. The second layer performs 
fuzzification with ∑ =

=
m

i ipn
1

2 . The weights and 

biases respectively represent the widths and means of 
input membership functions.  Using exponential 
activation function, the outputs of the second layer 
neurons are the fuzzified system inputs. The third 
layer has η neurons.  Weighting matrix of the third 
layer input represents antecedent parts of rules, and is 
called the Premise Matrix. Each row of the premise 
matrix presents a fuzzy rule such as: 

......: 11
1Pr 1

THENTisxANDANDTisxIFR
mxmxemise  

where j
xi

T  is the jth linguistic term of the ith input. 
The neuron output is determined by the min 
composition to provide the firing strength of rules. 

The fourth layer consists of separate sections for 
every system output. Each section represents 
consequent parts of rules for an output, such as: 

 .........: 1

iyieConsequenc TisyTHENR  

where j
yi

T  is the jth linguistic term of the ith output.  

Layer 5 makes the output membership functions.  
Combination of the fifth and sixth layers provides 
defuzzification method.  Weighting matrix of the 
fifth layer for each output section is a diagonal 
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Fig. 2. Structure of neuro-fuzzy identifier 



matrix that contains width of the output membership 
functions. The activation value of each neuron 
provides one summation term in defuzzified output. 
The linear activation function determines output of 
each output section.  The sixth layer completes 
defuzzification, and provides crisp output. The 
weighting vector of each neuron contains means of 
the output membership functions. The crisp output is 
derived by using activation function to implement the 
Center of Gravity approximation. 

Identification process may not perform desirably if it 
does not include the input/output interaction.  For 
this purpose, series-parallel configuration (Narandra 
and Parthasarathy, 1990) is chosen as it is drawn in 
Fig. 3.  This identification structure considers the 
past output states in conjunction with the present 
inputs to determine the present output.  The identifier 
with augmented inputs is represented by 

( ))(...,),(;)(...,),(ˆ)1(ˆ jkukuikykyfky −−=+ , (2) 

such that )(ˆ ky  is the estimated output at time step k, 

f̂  is identifier function, )(ku  and )(ky  are plant 

input and output vectors, respectively, at time step k. 

2.2   Adaptive Neuro-Fuzzy Identifier 

Adaptation of neuro-fuzzy identifier to a boiler 
system is essential to extract an identifier that truly 
models the boiler. Training algorithms enable 
identifier to configure fuzzy rules and adjust 
membership functions to model a boiler with certain 
error penalty.  Training of neuro-fuzzy identifier is 
taking place in two phases of configuration and 
tuning. Configuration phase determines fuzzy rules 
automatically based on available data from the boiler 
operation. For this purpose Genetic Algorithm (GA) 
training is chosen (Goldberg, 1989), because of 
specific structure of the neuro-fuzzy identifier.  
Fuzzy membership functions are adjusted during 
tuning to reduce modeling error. Error back-
propagation method is used for this tuning.  

In the start of training, the identifier is initialized 
with default input/output membership functions and 

fuzzy rules.  Positions of ‘1’s in the premise and 
consequence weighting matrices of the third and 
fourth layers define fuzzy rules. These matrices are 
encoded in the form of GA chromosome.   We recall 
that the fourth layer consists of several sub-sections 
because of multiple outputs. Therefore, a GA 
chromosome has a compound structure with n 
sections as the number of boiler outputs. Fig. 4 
shows a compound chromosome that is different 
from simple chromosome in standard GA. The 
number of genes in each section is equal to the rule 
number η. Each section encodes the premise and 
consequence matrices with an integer value of allele, 

i
jθ , that belongs to the alpha-numeric set of 

{ }i
i
j qA ...,,1,0=∈θ , for j = 1, …, η. Therefore, GA 

with non-binary alphabet (Mason, 1991) will be the 
training method.  Alpha-numeric size of each section 
is equal to the membership function number of 
corresponding output.  The value of i

jθ  represents 
the row position of ‘1’ in each column of the 
consequence matrix.  The GA will act separately on 
these sub-chromosomes to find the best fit.  Having a 
set of experimental input/output plant data points, 
GA can be applied to find optimal set of fuzzy rules.  
The fitness function, based on the least squares 
principle, provides evaluation of population 
individuals. To complete the GA iteration, it is 
necessary to prepare the next generation of 
population with applying three GA operators: 
selection, crossover and mutation. The weighted 
roulette wheel is used as selection operator that 
assigns a weighted slot to each individual (Dimeo 
and Lee, 1995).  Crossover operator generates two 
offspring strings from each pair of parent strings, 
chosen with probability of pc.  Crossover takes place 
in every sub-chromosome of parents.  Crossover 
points are determined randomly with uniform 
distribution. Mutation operator changes value of a 
gene position with a frequency equal to mutation rate 
pm.  The new value of a chosen gene will be 
randomly determined with uniform distribution.  
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Fig.  2.  Series-parallel identification. 
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Tuning the parameters of fuzzy membership 
functions completes training of the neuro-fuzzy 
system.  Adjusting the membership function 
increases the accuracy of the identifier, since the 
initial membership functions have been chosen in the 
beginning of the training.  Error back-propagation is 
used for training self-organized NFI. 
Let })(),({ kkDk γβ=  be a set of given pair of 

desired system input/output, such that 
mn kk ℜ⊂ℜ⊂ )(,)( γβ . If )(ˆ ky  is the output of the 

neuro-fuzzy system in response to the input )(kβ , the 

squared error is defined as the following 

 ])(ˆ)([])(ˆ)([2
1 kykkykE T −−= γγ . (3) 

The training set contains the mean and width of the 
input-output membership functions. The sixth layer’s 
weighting factor 6

, jiw  is updated by 

 
kjijiji wEkwkw )/()()1( 6

,
6
,

6
, ∂∂−=+ ν , (4) 

where ν is the learning rate. The error rate is derived 
from (3) as in the following: 

 
kjiiiiji wykykywE )/ˆ(])(ˆ)([/ 6

,
6
, ∂∂−−=∂∂ , (5) 

such that rate of the neuro-fuzzy output is derived by 
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In a way similar to the derivation of (3)-(6), the 
width and the mean of the membership functions in 
all other layers can be derived.  The learning rates 
should be chosen appropriately.  A small value of 
learning rate provides slow convergence.  Moreover, 
stability may not be achieved with using large 
learning rate.  Training ends after achieving specified 
error or reaching the maximum iteration number.  
Mean and width of the input/output membership 
functions are updated with final values of weighting 
matrices and bias vectors. 

2.3   Control Input Optimizer 

Optimized control input vector is determined in 
future time horizon by Evolutionary Programming 
(EP) technique (Fogel, 1991).  Generations of input 
vectors are formed and selected by means of 
probability transition rules.  Each individual in a 
generation competes with some of the other 
individuals in a combined population of the old and 
mutated generations.  The competition results are 
valued by using a probabilistic rule.  The winners of 
combined population constitute the next generation 
for evaluation of input vectors. 

Initial population is produced randomly by 
individuals such as the following ith individual: 

 ]...[ 21
i
m

ii
i uuuU ∆∆∆=∆ , for pNi ,...,2,1= (7) 

where pN is population size, m is number of inputs, 
i
ju∆  is the ith vector as in the following 

 T
y

j
i

j
i

j
i

j
i nuuuu ])()2()1([ ∆∆∆=∆  (8) 

such that yn  is the number of steps in predictive 
discrete-time horizon for boiler output estimation that 
is defined by 12 NNny −=  .  The individuals of input 
vector variation belong to the limited range of 

],[)( maxmin
jjj

i uulu ∆∆∈∆ . 

The fitness function of the ith individual in 
population is defined by (1).  Based on this fitness 
function, the maximum, minimum, sum and average 
of the individual fitness should be calculated for 
further statistical process. 

Each individual of the population derives a new 
individual as in the following: 

 ( )2,0)()( σΝ+∆=∆ + lulu i
j

Npi
j   (9) 

where ),0( 2σΝ  represents Gaussian random 
variable with zero mean and variance 2σ .  The 
variance is chosen to be a function of fitness value of 
the ith individual.  The generated new individuals 
and old individuals produce a new combined 
population with size of PN2 .  Each member of the 
combined population competes with some other 
members to determine which one is valued to survive 
to next generation. To select the survived individual, 
a weight value is assigned to each individual by 

 ∑
=

=
p

k
ki vv

1

 (10) 

where p is the number of members to compete with, 
and }1,0{∈kv  is determined as in the following by 
randomly choosing the kth individual with uniform 
distribution: 
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such that ]1,0[∈kλ  is a randomly selected number 
with uniform distribution, and kf  is fitness of the 
selected individual.  The NP individuals with the 
highest competition weights are selected to form the 
next generation of population.  This newly formed 
generation participates in next iteration.  To 
determine the convergence of the process, the 
difference of maximum and minimum fitness of the 
population is checked against the desired number.  If 
this convergence condition is met, then the individual 
with the highest fitness is selected as sequence of ny 
input vectors for the future time horizon.  The first 
vector is applied to the plant and the time window 



shifts to the next prediction phase.  In order to 
eliminate the offset error in boiler response, a 
proportional gain is placed after the controller output. 

3.  BOILER CONTROL IMPLEMENTATION 

To simplify simulation, actual boiler data is obtained 
from a boiler model that is developed by Bell and 
Åström (Åstrom and Bell 1987). The model is a 
nonlinear 4th order, derived by physical and 
empirical methods, as in the following:  

 20/)(/ 131 xutdxd −= , (12) 

 20/)55.3(/ 22 xwtdxd s −= , (13) 

 31
8/9
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 1.25.26.45)147.085.0( 312 −−+−= uupuqe , (19)  

where p  is drum steam pressure (kg/cm2), 1x  and 

2x  are state variables for water swell and shrink 
effects, sw  is steam mass flowrate (kg/s), L  is water 
level deviation about mean (m), fρ  is fluid density 
(kg/m3), 21 , uu  and 3u  are normalized fuel, steam, 
and feedwater valve positions, sα  is steam quality 
(mass ratio), and eq  is evaporation rate (kg/s). 

The actuator dynamics of control valves are also 
modeled to limit rate of change in valve positions: 

 sec/007.0/1 ≤tdud  0.10.0 1 ≤≤ u , (20) 

 sec/1.0/0.1 2 ≤≤− tdud  0.10.0 2 ≤≤ u , (21) 

 sec/05.0/3 ≤tdud  0.10.0 3 ≤≤ u . (22) 

Before closing the control loop, NFI is trained to 
represent the boiler identifier.  Training data is saved 
by simulation of this boiler model.  A set of valve 
position inputs is chosen to excite boiler model.  The 
input vector of the identifier includes inputs of 
boiler, drum pressure and steam flowrate state 
variables.  Every inputs and outputs of NFI has seven 
membership functions. The training engine evaluates 
rule set candidates and finds the final set. The plant 
data is obtained from boiler simulation in three 
power ranges. The crossover and mutation rates are 
chosen to be pc = 0.7, pm = 0.005 in GA training.  

Fig. 5 depicts the comparison of the identifier 
response and the boiler data in response to the fuel 
deviation sequence in low power range.  After 
training NFI, it is placed in the closed loop of the 
predictive control as in Fig. 1.  The prediction time 
window is selected to be N1=50 sec, N2=130 sec, 
Nu=70 sec with prediction time step of =∆t 10 sec, 
while the simulation time step is 0.1 sec.  Population 
size is NP=10.  The boiler response to ramp change 
of power from low to medium power is shown in 
Fig. 6.  The set-points of steam flowrate and pressure 
steam rise up in ramp for this power change, while 
the water level set-point is kept constant.  Steam 
pressure, in Fig. 6-(a), follows the ramp variation and 
settles to constant reference input after 25 prediction 
steps.  The transient response shows an overshoot 
that suppresses after two prediction cycles due to 
anticipation of set-point in future time.  Steam mass 
flowrate of the same test in Fig. 6-(b) accepts similar 
transition in the beginning and end of the ramp. 
Moreover, it settles to the final reference value faster 
than steam pressure due to faster dynamic of the 
flowrate that is performed by NFI.  Boiler drum 
water level is shown in Fig. 6-(c), and it stays almost 
constant during the ramp power up.  To improve the 
transient response, a larger prediction time may be 
chosen to consider the future set-point values earlier 
in optimization of control action.  In addition, 
increase of population size in EPO improves the 
transient and settling performance of the outputs 
because optimizer will be able to search between 
more candidates, obtaining an optimized input 
vector. 

4.  CONCLUSIONS 

Structure of intelligent adaptive predictive control is 
studied and used in control of a fossil fuel boiler.  
This control approach is equipped to a neuro-fuzzy 
identifier to foresee a sequence of fuel, air and steam 
valve positions in future time window.  This 
sequence of plant inputs is optimized, determined 
with evolutionary programming technique.  The first 
input vector of the sequence is used to excite the 
boiler valve position at each time.  The time window 
shifts for another time step and the prediction phase 
repeats to determine the next input.  The neuro-fuzzy 
identifier is highly structural and trainable, and can 
be adapted to the boiler-measured data.  Genetic 
algorithm and error back-propagation methods are 
used to train fuzzy rules and fuzzy membership 
function parameters, respectively.  This neuro-fuzzy 
identifier makes the predictive control process to be 
non-model based, and provides an intelligent control 
methodology that is adapted to boiler operating 
conditions and changes. 
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Fig. 6.  Transient response to ramp variation of low 
to medium power (a) steam pressure (b) steam mass 
flowrate (c) drum water level. 
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