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Abstract: In this paper, a quasi-deadbeat propert yis introduced and a quasi-deadbeat
minimax filter (QMMF) is proposed for contin uous-time state space signal models. Linearity,
quasi-deadbeat property, FIR structure, and independence of the initial state information will
be required in advance, in addition to a performance index of the worst case gain between the
disturbance and the current estimation error. The proposed QMMF is obtained by directly
minimizing a performance index with the quasi-deadbeat constraint. The proposed QMMF
is represen ted first in a standard FIR form and then in an iteratie form. The QMMF will

be shown to be used also for the IIR structure.
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1. INTRODUCTION

For the frequency domain based filter design, lin-
ear phase filters are often preferred because the origi-
nal signal can be processed without distortion. This is
equiv alen t to the exact estimation, i.e, zero estimation
error, in the time domain based filter design. The
exact estimation filters are often called the deadbeat
filters. F or signal models with disturbances it is too
strong that thedeadbeat propert y holds even under
every case of disturbances. Thus, the existing dead-
beat filters have been obtained for some class of dis-
turbances, particularly for zero disturbance(Valcher,
1999) (Suh and Choi, 1999). If there exist undesirable
disturbances, the deadeat property does not hold and
estimation error could be very large. That is, the dead-
beat filter can be sensitiv e to exterior disturbances
and can not guarantee some performances.

Meanwhile there are other class of filters such as worst
case filters, where worst case estimation error due to
some w orst case element of possible disturbances is
minimized. They are minimax filters for stochastic
systems (Verdu and Poor, 1984) (Darragh and Looze,
1984) (Poor and Loose, 1981) (Krener, 1980) and H
filters for deterministic systems (Li and Fu, 1997)
(Nagpal and Khargonekar, 1991) (Fu and de Souza,
1992). In particular, an Ho, filter is designed such

that the H., norm, which reflects the w orst case
estimation error, is minimized. An optimal solution of
H, filters is difficult to implement. Th us, suboptimal
solutions are often obtained in order to guarantee
some upper bound of the error. In this case, there is
still no systematic guide to find a reasonable bound.
F or some real disturbances, the estimation error could
be unnecessarily large since it is designed for w orst
case element of disturbances.

Therefore it will be good if deadbeat property holds
for some class of disturbances, particularly for zero
disturbance and at the same time worst case estima-
tion error is minimized for some worst case element
of disturbances. This approach is suggested in this
paper. The above filters will be called quasi-deadbeat
filters since the filters have deadbeat property for zero
disturbance but may not have such property if there
are undesirable disturbances.

For most existing state estimation filters including
abo ve filters, initial state information is often assumed
known even if the initial state is also a state to be
estimated. This is not reasonable. Therefore the initial
state information is assumed completely unknown in
this paper. The suggested filters will be obtained
independently of the initial state information.



Filters can be of the infinite impulse response (IIR)
type or the finite impulse response (FIR) type. In this
paper, the focus will be on FIR filters, while the IIR
filter will be summarized at the end of each section.
The linear FIR filter, independent of the initial state
information can be represented by

a(tlt) = /t_T H(t — o)y (o)do
+ /th L(t — o)u(o)do (1)

at the present time ¢ for some gains H(-) and L(-). The
IIR filter has a similar form to (1) with ¢ — T replaced
by the initial time ¢9. For IIR and FIR types, the
initial state means x(to) and z(t — T'), respectively.

The suggested filter (1) with either a FIR or an IIR
structure will not have a state term and the filter
gain H(-) and L(-) will be independent of the initial
state information. It is noted that standard Kalman
filters have an initial state term and the gain H(-) also
depends on the initial state information.

FIR filters make use of finite measurements and inputs
on the most recent time interval [t — T,t], called
the receding horizon, or the window, to avoid long
calculation times that arise, as is often the case of IIR
structures, from large data sets as time increases. It
has been generally accepted that the FIR structure in
filters is more robust to temporary modeling uncer-
tainties and numerical errors than the IIR structure.

Measure of worst case estimation error can be de-
fined differently from existing ones if necessary. In
this paper, a new measure of worst case estimation
error will be suggested, which in fact results in very
interesting solutions. Among linear FIR filters with
quasi-deadbeat property, the following new optimal
criterion will be suggested:

[2(t) — &[] [2(t) — 2(])] )

ftth wT (T)w(r)dr

min max
H()L() w(-)20

These optimal filters will be called the quasi-deadbeat
minimax filter(QMMF) with FIR structure. In (Han
et al., 2001a), the deterministic discrete system is
considered based on the minimax optimal criterion,
which only requires the algebraic manipulation. How-
ever, there is no result for the corresponding problem
in case of continuous-time systems since an entailed
functional optimization problem is difficult to solve.
This paper proposes a new minimax optimal criterion
(2) under the assumption of the unknown initial state
and the requirement of the quasi-deadbeat property
for continuous-time systems.

It is noted that the criterion (2) differs from the
existing criterion for Ho problems for IR filters as

Jolw(r) = &(n)]" [x(r) — &(r)ldr

Ji wT (P)w(r)dr

inf  sup 3

H()L() w(-)#£0 ®)
where o is the initial time. Note that the numera-
tor of (2) considers only the current estimation error
compared with (3) using the distributed terms in the

numerator. Since the current estimation error is an is-
sue, it is reasonable to take only the current estimation
error in the numerator of the cost function instead of
the accumulated estimation error including the pre-
vious estimation errors. Ho, problems are difficult to
solve and this problem can be solved by considering
an upper bound on the Hs norm, which yields so-
lutions of a differential game. However, the proposed
QMMEF will be shown to provide an optimal solution
explicitly, even with the quasi-deadbeat property. It
is also shown that the approach for the FIR structure
can be extended to the IIR structure.

The QMMF is both quasi-deadbeat and optimal
by design for the proposed cost. The ‘by design’ means
that the quasi-deadbeat property and optimality are
built into the QMMF during its design. While only
the algebraic manipulations are necessary for discrete-
time systems, in this work, the calculus of variation
is mainly used for continuous-time systems. The pro-
posed QMMF will be represented in both a standard
batch form and an iterative form. It will be shown
that the QMMF for deterministic systems is similar
in form to the existing receding horizon unbiased
FIR filter (RHUFF) for stochastic systems (Han et
al., 2001b)(Kwon et al., n.d.).

This paper is organized as follows. In Section 2,
the QMMF for continuous-time state space models
is proposed in a standard batch form. In Section 3,
iterative forms will be obtained and the comparison
with the existing RHUFF and the Kalman filter are
shown. Finally, conclusions are stated in Section 4.

2. QUASI-DEADBEAT MINIMAX FILTERS

Consider a linear continuous-time state space
model with control input:

#(t) = Ax(t) + Bu(t) + Gu(t), (4)
y(t) = Ca(t) + Duw(t) (5)

where z(t) € R", u(t) € R, y(t) € R, and w(t) €
RP are the state, the input, the measurement, and the
disturbance, respectively. GDT = O and DDT =T
are satisfied to decouple the system disturbance and
the measurement disturbance.

The systems (4) and (5) will be represented on the
most recent time interval [t — T, ¢], called the horizon.
The current state z(t) is given by a solution of (4) as
follows:

t
z(t) =e* " x(0) + / e =" Bu(r)dr

t
+/ eI Gu(r)dr, t—T<o<t. (6)

Then, z(o) in (6) is written as

¢
z(o) = eA(J_t)a:(t) —/ eA(J_T)Bu(T)dT

t
— / e Gu(r)dr.

o



Therefore, on the horizon [t — T, t], the finite measure-
ments and inputs can be expressed in terms of the
state z(t) at the current time ¢ as follows:

y(o) = Cxz(o) + Dw(o)

t
=C [eA(U_t)a:(t) — / e Bu(r)dr

_ /: @A("_T)Gw(T)dT] +Dw(o). (7)

The output y(o) and the integral term including input
u(r) are assumed to be known. Hence, known and
unknown parts can be separated as

t
y(o) + C'/ e Bu(r)dr = C [eA(J_t)x(t)

- /: eA(U_T)Gw(T)dT] +Dw(o).

Using known variables, the QMMF for the current
state z(t) can be expressed as a linear functional of the
finite measurements and inputs on the horizon [t—T, t]
as follows:

()

- /tiTH(t — o)y(o)do + /tiTL(t — o)u(o)do

L(t—o0) = /:T H(t—7)Ce* "7 Bdr.  (9)

Note that H(t — o) and L(t — o) are gain matrices
of a linear filter. It is noted that the filter defined in
(8) is an FIR structure without any a priori statistical
information on the horizon initial state z(t — T'). The
gain matrix H(t — o) will be designed such that &(t|t)
is an deadbeat estimation filter of the current state
z(t) as

() = /;T H(t - o) [y(a) e /: eA@’*T)Bu(T)dT] do

t
= / H(t — o) [oe*‘(f’*%(t)
t—T
t
- 0/ eI Gu(r)dr + w(a)] do
If there is no disturbance,
t
a(elt) = / H(t — 0)Ce™C Vg (t)do.
t—T

In order for x(£|t) = z(t), the following constraint on
H(t — o) is required:

t
/ H(t—0)Ce* " g = T (10)
t—T

which will be called the quasi-deadbeat constraint. It
is noted that constraint (10) must hold regardless of
the information on the horizon initial state z(t—1) on

/;T Ht— o) [y(a) e [ eA@’*T)Bu(T)dT]

the horizon [¢—T,¢]. This constraint may be too strict,
but surprisingly, we were able to obtain the solution.

The objective now is to obtain the best gain matrix
Hp(t — o), subject to the quasi-deadbeat constraint
(10), based on the following criterion:

Hp(t —0) = arg min max
H(t—0)w(-)#0

{ [o(t) — (1)) " [(t) — (t1t)] }

[LpwT (r)Fuw(r)dr

(11)

To solve the above state estimation problem with
quasi-deadbeat constraint, an optimization problem
with constraints will be introduced. It will be shown
that the constraints consist of an algebraic equation
and a differential equation.

Replacing y(o) with the right side of (7), we have the
estimate as follows:

2(t|t)
;,/ttTH(t —0) [y(a) + C/: eA(J_T)Bu(T)dT] do
= t H(t - o) [Cm(cr)—f—Dw(a)
(8) t—T

¢
/ e ") Bu(r)dr

o

_ /;T H(t - o) [o{ef‘(“)z(t) -

— /t eA(J_T)Gw(T)dT} + Dw(o)

o

t
+C / e*‘@’**)Bu(r)dT]da. (12)

Using the quasi-deadbeat constraint (10) and rear-
ranging the terms, the error between the real current
state and the estimate can be expressed as

¢ t
o(t) — &(t|t) = / H(t - a){o/ e Qu(r)dr
t—=T o
— Dw(o) }do. (13)
In solving for H(t — o), it will be convenient to define

H(t — o) consisting of the row vector h7 (t — o) for
1<i<nas

hi (t — o)
hs (t— o)

H(t—-0) 2 |hs(t—0) |, (14)
hf(t.—a)

Then, the error of the i-th state x;(t) can now be
expressed in terms of the vector components of H(t —
o) as follows:



{wi(t) — @:(t]t)}”
- [/t hi(t —a){C’/: A=) G (r)dr
— Duw(0)}do]*
/ / hi(t — 7)Ce* "~ Gdr
— hi(t — 0)D}w(o)da]’. (15)

Though as state previously, the QMMEF is required to
be deadbeat with zero disturbance, the QMMF can be
deadbeat if the integral kernel and the w(-) in (15) are
orthogonal each other. This shows that the proposed
QMMF can be deadbeat for all w(-) belong to the
orthogonal space with respect to the integral kernel.

By the Causchy-Schwartz inequality, the following
relation is obtained from (15):

<t

—hi(t— 0)D}2da]/t_T w” (T)w(r

{zi(t) — 2:(t]t)} it — )0 Gdr
)dr.
Thus

{wi(t) — 2 tlt }2

ftthwT(

<

— hi(t — U)D} do].

Note that an equality is satisfied for some w(7) which
is linearly dependent on an error. So,

STl ANV

—hi(t— O')D} do].

L fn) -
w()ﬂ)f rwT (T

The right side of (16) can be represented as

t o o
/ / / It — r)Ce @
t—T Jt—-T Jt-T

GTer (=T hy(t — n)drdndo

t

+ / hi(t — o)hi(t — o)do. (17)
t—T

Introducing another variable, we obtain the somewhat

simplified form requiring only a minimization opera-

tion as follows:

¢ ¢
Min / L (0)GGT fi(o)do + / hE(t — o)hi(t — o)do
hi(t=o),f () t—T

flo)=

where fi(0) = [7.e T=OCThi(t — T)dr, fit —
T) = 0, and e; 1s the ¢th unit vector such that
e; =[0,---,0,1,0,---,0]7 with the nonzero element
in the ¢th position. To solve the above optimization
problem, the key idea is introduced. To extremize the
integral

subject to

ta
I:/ f(x17x27"'7:1517x.27"'7t)dt (18)

t1

it —7)Ce" 7 Gdr

with respect to the continuously differentiable func-
tions x1,x2,--- which achieve the prescribed values
t = t; and t = t2, and satisfy the given equation
G(x1,T2, -+ ,T1,T2,--,t) = 0, the following differ-
ential equations must be satisfied

OF d , 0F
- = =0 fori=1,2,--- 1
o0~ d@ilag,) =0 fori=12, (19)
WhereF(a:l,xz,~~~,x'l,x'z,-~~,t):f(arl,arg,'--,:1:'1,:1:'2,~~-

At)G(x1,z2,- -+ ,T1,T2, - ,t) for function A(t) which
is determined to extremize I.

Define the following notation:

F(o) 2 f1(0)GG" fi(o) + hT (t — 0)hi(t — o)
M (fi(o) = CThit — o) + AT fi(0)).

We need to calculate the following value:

F T

a7, = 2GG" fi(o) + AXi(0) (20)
F = A0

o7, =Xi(o) (21)
F

o =2h;(t — o) — CXi(o). (22)

_ A(r—0o)
i(t —7)Ce G om equation (19), we can obtain f;(c) in a Hamil-

tonian matrix form

7 110] - [ 10T
* x[{]

From (22), h;(t — o) is of the form
(16)

hi(t — o) = %C)\i(a)

1 Ho—t+T) | fi(t =T)
=-C[0 1] +){/\i(t_T)].

Using f;(t —T) = 0 and e®~+7) defined by

X(c—t+T) Y(e—t+T)

H(o—t+T) _
¢ = Zo-t+1) W(a—t+T)]’(23)

h;i(t — o) can be expressed as

hi(t — o) = %CW(U —t+T)\i(t—T).

Usigg the quasi-deadbeat condition

hi(t—0)C — fi (o)A and fi'(t) =e;

t
/ 5AT(t —TYW% (o —t+T)CTCe* ™ Vdo = e,
T

we have

¢ -1
AN (t=T)=e; [/ TWT (o -t + T)CTCAC N do

T2

where the inverse exists as follows. By tedious calcu-
lation using (23) ft s 3Wh (o —t+T)CTCeA o

)+



can be replaced by Y7 (T). If (4,C) is observable,
Y(T) is guaranteed to be nonsingular as follows.
efl(@=t+T) are similar to the block upper triangular
matrix

T 1 T
GHE—t+T) _ [é ?] exp{ —(A-GO) ;¢'C
o A—-GC

-

where S and G satisfy O = SAT + AS + 2GGT —
15CTCS and G = 1SC”, which are guaranteed
to exist for (A,C) observability. Using the inverse
Laplace transform and the convolution, Y (7') can be
obtained as follows:

T
g 1 ace oo
Y(T) = e~ GC)TT/ EE(A GOV T 0T (g (A=GOIT 4
0

If (A, C) is observable, (A — GC,C) is also observable.
Thus, Y (T'), consisting of an exponential matrix and
the observability Gramian, is nonsingular.

Theorem 1.  The QMMF for the observable system
(4) and (5) can be expressed as

¢
Z(t|t) = / H(t —o)y(o)do + / L(t — o)u(o)24)
t—T
where H(t — o) and L(t — o) are as follows:

H(t—-o0)= [/ Whr —t+T)CTCe? t)dr]

Wi —t+T)C" (25)

and
Lt — o) = / H(t— )0 Bdr  (26)
where W(r —t +T) is given by (23). 1

It is surprising that there exists a closed form solution
(25) and (26) even under the strong condition (10)
and that the gain H(-) is independent of the initial
state information. While most of filters including H,
filter and Kalman filter encounter singular problems
for zero disturbance, the proposed QMMEF still holds
even under zero disturbance.

Remark 2. In case of zero disturbance, the filter gain
of the QMMTF is reduced to the following form:

H(t—o)= [/t 6AT(7'7t+T)CTC€A(T7t)dT
t—T

eAT(a—H—T)CT (27)

Remark (1) shows that the QMMF is well defined
under zero disturbance and the inverse is guaranteed
for the observability of (A.C) .

It is noted that, using similar procedures, the batch

form of IIR filters requiring no a prior: initial state
information can be given by (24), (25), and (26) with
t — T replaced by to. In the next section, an iterative
form for a batch form (25) and (26) will be shown.

3. ITERATIVE FORM

Consider S(o —t + T') defined by

So—t+T)EW T(c—t+T)

[/ Wh(r—t+T)CTCe* ™ dr|  (28)
for t — T < o < t. From the definition of W(-) and

Y (), W(-) and Y (-) satisfy the following differential
equations with respect to o:

w =2GG"Y (o —t+T)
ag
+ AW (o —t+T) (29)
M:_ATy(g_t+T)
do

1
+ 5CT(JW(a —t+1T). (30)
Then, differentiating S(oc —t + T') with respect to o

and substituting (28) and (30) into the result, we have
the derivative of S(o —t + T') as follows:

8S(c —t+1T)

— _ _ T _
9% =—S(c—-t+T)GG" S(c —t+T)

—A"S(o—t+T)+0C"C
—S(oc —t+T)A. (31)

2g

If we define #(o|t) = S(o — t + T)Z(o|t), i.e

el = [ W —t+ D)W -t 1)C"
[y(s) e / ’ eA(S_T)Bu(T)dT] ds (32)
where
i(olt) = [/ WT(r -t +T)CT e~ ")dr]_l
/FT Wh(s—t+T)C" {y(s)
e / 0 eA(s_T)Bu(T)dT] ds, (33)

we obtain another recursive equation:

dij(alt) _

—[AT 4+ S(o —t + T)GG ii(o]t)
+ C"y(o) + S(o — t + T)Bu(o).
Theorem 3.  Assume that {4, C'} is observable and
T > 0. The QMMF Z(¢t|t) for continuous-time state

space models (4), (5) is given on the horizon [t — T, ¢]
as follows:



&(tl) = S7HT)itt) (34)

where 7(t|t) and S(T') are obtained as follows:

The proposed QMMF will be very useful for real
plants that are usually modeled in continuous-time
state space. In addition, the proposed QMMF with
FIR structure can substitute the commonly used H
and deadbeat filters.
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BT — 5(r)A— A75(r) — S()GETS(r) + OO
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