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Abstract: Predictive control technique is applied to the three-axis attitude control of 
spacecraft. The principal idea of predictive control is to construct a priori reference 
trajectory and build control command so that the actual system follows the reference 
trajectory. In the case of this study, the controlled variables are the quaternion attitude 
parameters and angular rates of spacecraft body axes. The key objective of this paper is 
to design a predictive controller for the three-axis attitude control under external 
disturbances. Designing a predictive control law including disturbances and estimation 
of the disturbance are discussed. Conventional predictive controller design approach has 
been partially modified in conjunction with disturbance identification strategy. The 
results of this paper, attitude control simulation results, are presented to prove this 
research. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
Satellite attitude dynamics are basically governed by 
nonlinear equations due to inherent gyroscopic 
coupling effect which arises from three-axis 
rotational motion. The Euler equation describes 
dynamic equilibrium between system angular 
momentum vector and applied torque inputs. The 
nonlinearity of governing equations require nonlinear 
control law in general even though, in some regions 
of interest, linearized version of governing equations 
may be used to design linear control laws. There has 
been significant effort in nonlinear control laws 
design for the spacecraft attitude maneuver, in 
particular, large angle attitude maneuvers. 
  
As a nonlinear control design approach, the so-called 
predictive control uses future reference trajectories to 
design a control law based upon the reference 
trajectories and current states of the given system. 
The nonlinear predictive control law has been 
recently applied to control of aerospace systems such 
as aircraft, missiles, and spacecraft(Lu, 1994). In 
particular, the spacecraft large angle maneuver 
control law as well as filtering problem have been 
investigated by Crassidis et al. (1997). The central 
feature of the predictive control is to build a control 
input in such a manner that the trajectory of actual 
system follows that of the reference system. 
  
Crassidis et al. (1997) applied the predictive control 
technique to three-axis spacecraft attitude control. 
Both quaternion attitude parameters and angular 

velocity components of spacecraft body axes are 
taken as control variables. Also, predictive filtering 
has been investigated as a dual problem to the 
controller design case. In this case, system modelling 
error was taken as external disturbance input which is 
estimated in the sense of minimum estimation error. 
The cost function is therefore selected in the form of 
error covariance for the filtering problem. 
 
In majority of previous studies for predictive control, 
external disturbance has not been considered in the 
system dynamics. Only control input is used to 
describe system dynamics, which is not practically 
true. In other words, external disturbance and control 
input act together to excite system dynamics. 
Spacecrafts in general mission are easily subject to 
various environmental disturbance sources such as 
solar pressure, gravitational disturbance, earth 
magnetic field effect, and other internal sources.  
 
In this paper a predictive control design approach is 
proposed for the application to the spacecraft 
nonlinear attitude maneuvers. This study could be 
considered as an extension of a previous study by 
Crassidis (1997) by explicitly including external 
disturbance input in the system dynamics. Then the 
control law is designed in such a manner to handle 
the disturbance directly. The disturbance is also 
estimated on the condition that the tracking error 
energy is kept at minimum by the designed control 
law in conjunction with the disturbance input. 
 
 

     

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



2. GOVERNING EQUATIONS OF MOTION  
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Before the control law design is discussed, the 
governing equations of motion for spacecraft attitude 
motion are presented first. The Euler equation 
produces equations of motion for rotational dynamics 
as 

 
Difference( q′ ) between two quaternion elements(q, 
q′ ) can be represented as (Sidi, 1997) 
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where H represents system angular momentum 
vector, ω  is angular velocity vector, and u  
denotes external torque input vector which includes 
both control and disturbance torque inputs. If 
spacecraft mass moment of inertia is denoted as J, 
then the angular momentum(H) vector can be written 
as 

ext

J ω . So that the equation of motion in Eq. (1) 
becomes 

 
The above relationship is used to determine error 
quaternions between the desired and the actual 
trajectory of systems. If the errors are to be so small 
then it can be seen that 13′′q  approaches zero while q′′4  
approaches unity. 
  
 1 1( )J J J extu−= − × +ω ω ω −            (2) 

3. PREDICTIVE CONTROL DESIGN  
 In addition to rotational dynamics, attitude 

kinematics is needed to describe spacecraft motion 
completely. Quaternion is a popular attitude 
representation method without singularity problem. 
The quaternion elements are defined as (Sidi, 1997) 

 
3.1 Predictive Control Theory 
 
Let us consider a nonlinear system dynamics 
represented in the form  
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The above system description is directly associated 
with spacecraft attitude dynamics presented in the 
previous section. The notations are  for state 
vector, 

( ) nt R∈x
( ) pt R∈u for control input vector, d for 

external disturbance input, and y  for system 
output vector. The output function given in Eq. (8b) 
is designed to follow a reference trajectory by the 
control command to be designed. Also, the 
disturbance influence function D  is tentatively 
assumed to be identified exactly. This rather ideal 
assumption still does not mislead the original 
objective of this study. 
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qt R∈
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where  is the vector of Euler’s principal axis and n̂
θ  represents Euler’s principal angle in Euler’s 
principal axis rotation theorem. Obviously, 
quaternions satisfy the following constraint equation 
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The time rate of change of quaternions can be related 
to the spacecraft body axis angular velocity 
components (Sidi, 1997) 
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ω ω= Ω = Ξq q q               (5) As the first step of predictive control design, the 
output function in Eq. (8b) at time t  is defined 
in terms of other variables at time t . Taylor series 
expansion is applied to derive such relationships. By 
using Lie derivative notations, therefore the 
following relationship is resulted. 
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where each symbol is given by 
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where  is also represented in the form 
of Lie derivative such as (Crassidis et al., 1997) 

( ( ), ) mz x t t R∆ ∈

  
and the following notation was employed. 

1

( ( ), ) ( )
!

ip k
k

i f
k

tz t t L c
k=

∆
∆ = ∑x i           (10)  

     



Note that p i  is the order of derivative 
of  for which the control input appears 
explicitly for the first time. 

, 1, 2, . . . ,i m=

))t( (ic x
( )k

f iL c  represents k-th Lie 
derivative satisfying  (Lu, 1994) 
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where  is a diagonal matrix with 
diagonal components given as (Lu, 1994) 

( ) m mt R ×Λ ∆ ∈
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In addition both S t  and ( ( )) m p

G R ×∈x ( ( )) m q
DS t R ×∈x  

can be defined in terms of matrices which consist of 
the following row elements (Crassidis et al., 1997) . 
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for which the Lie derivatives satisfy  
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Based upon derivations made here, predictive 
controller design is followed in the next. 
 
 
3.2 Predictive Controller Design 
 
The derivations resulted in the previous section are 
used to build a nonlinear predictive control law. As 
early mentioned, the external disturbance input( d ) 
is directly accommodated in the controller design as 
it appears explicitly in the system dynamics.  

( )t

 
First, a cost function which consist of tracking error 
energy, control input ( u ), and external disturbance 
( ) is defined first. The cost function is in the 
form of a Lyapunov function as follows 
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where  is the desired output at time t t(t t+ ∆y ) + ∆  

, m m×R R∈ p p×W R∈ , and H R  represent  the 
weighting matrices on each term including output 
error, control input and disturbance input. Note that 
the cost function defined in Eq. (15) is different from 
that of previous studies by Lu (1994) and Crassidis et 
al. (1997). In those cases control input and 
disturbance were handled separately. In other words, 

for controller design, only control input ( u ) was 
considered in the cost function while for the filtering, 
only modelling error( ) was adopted in the cost 
function.  
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Now for the given cost function, partial derivatives 
are taken with respect to u(t) and d(t). This operation 
is intended to find the best set of control input and 
disturbance simultaneously in the sense of minimum 
output tracking error. After simple algebra starting 
from 
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it can be shown that 
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where each parameter is defined as 
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The subscripts are arranged in such a way as 
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Equation (16) indicates that the final control law 
implicitly depends upon the disturbance input due to 
couplings by system parameters and weighting 
parameters. Therefore, information on the 
disturbance input play important role in 
implementing the control law. In the case of filtering 
problem by Crassidis and Markley (1997), the 
disturbance which is considered to be modelling 
error is estimated on-line. 

 
 

3.3 Application into Spacecraft Attitude Control 
 
In order to apply the control design technique to the 
spacecraft attitude control problem, first Eqs. (2) and 
(5) are transformed into a standard nonlinear state 
equation as defined in Eq. (8). The state vector is 
then defined as 

 

q

ω

 
 
 
  

                     (18) 

 
so that the resultant state space form of governing 
equations are given by 
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Since attitude stabilization as well as attitude 
pointing is a control objective, the output function 
becomes 

 
=y x                                     (20) 

 
For a given output function, time derivatives over the 
components of the output function is taken 
successively until explicit dependency on u(t) is 
derived. In this special case, the lowest order of 
derivatives turns out to be 
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and  
 By using the order of derivatives, associated matrices 

can be obtained as (Crassidis et al., 1997) 4 4 4 3
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The initial attitude quaternions and the angular 
velocity of the actual spacecraft are selected with 
discrepancy from those of ideal trajectories. The 
controller performance is then examined whether the 
actual system follows the reference system with 
desired tracking performance. It turns out that the 
simulation results show satisfactory maneuvers in the 
wide range of the weighting parameter(W) on control 
input. But the excessive suppression of the control 
input, or a large value of W, results in the poor 
performance of the attitude tracking. Two different 
cases with different W are presented herein. 

 
where the vector defined in Eq. (10) is written as  z
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Case I ) W = 0  

where each parameter can be shown to be 
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Disturbance input(d(t)) is applied to the system 
dynamics first, and Eq. (16) is used to determine both 
control input and disturbance. Simulation results are 
presented in Figs. 2 and 3. Fig. 2 compares the actual 
trajectories with those of the reference system. Fig. 3 
shows the tracking error trends between the reference 
and the actual trajectories. As shown, the simulation 
results indicate a satisfactory tracking maneuver. 

 
 

 4. SIMULATION STUDY 
Case II)  W I ×3 3= 0.1   
In this case identical simulation conditions with Case 
I) are used except for the control weighting 
parameter which is given by W=0.1. Simulation 
results are plotted in Figs. 4 and 5. Compared to Fig. 
2, sluggish responses in tracking error are observed. 
This is attributed to the increase in weighting 
parameter in control input. The increased weighting 
parameter tends to limit the magnitude of the control 
command. This value, however, is large enough to be 
equal to the weighting parameter(H) in the 
disturbance.  

In order to validate the designed control law, a 
sample simulation is conducted. The total simulation 
time is set to 200 seconds. The reference quaternion 
attitude trajectory is arbitrarily prescribed as Fig. 1. 

 
The mass moment of inertia of spacecraft and 
weighting functions for the cost function are given 
by 

 
(20,10,15)J diag= (kg-m2) 

 
 

     



  
  

Fig. 5 Tracking error between reference and actual 
trajectories (W I3 30.1 ×= ) 

Fig. 2 Reference and the actual trajectories with W=0 
 

 

 

The sensitivity of the control command with respect 
to the weighting parameter is legal since a larger 
control weighting parameter results in smaller control 
input and larger disturbance estimation. From the fact, 
a delicate relationship of the estimated disturbance 
and the real disturbance should be investigated in the 
future study.  

 
 

4. CONCLUSION 
 

Predictive control approach has been applied to 
spacecraft nonlinear attitude maneuvers under the 
presence of external disturbance. The control input is 
obtained implicitly in terms of disturbance input. The 
disturbance input is also derived in a manner to 
minimize tracking error between reference and actual 
systems. Simulation results validate the proposed 
control design technique. The resultant tracking 
performance is acceptable even if too higher 
weighting on control input may result in degradation 
of controlled performance of closed-loop system. 
Refinement of The relationship of the estimated 
disturbance and the real disturbance needs in the 
further study. 

 

Fig. 3 Tracking error between the reference and the 
actual trajectories (W=0) 
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