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DESIGN OF DIGITAL MIMO CONTROL SYSTEMS WITH
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Abstract: The systematic approach of designing a robust sampled-data controller
to solve output regulation problem for a MIMO nonlinear systems with unknown
external disturbances and varying parameters is presented. The design methodology
is based on the construction of two-time-scale motions in the closed-loop system.
It has been shown that the proposed dynamical controller with a sufficiently small
sampling period induces a two-time-scale separation of the fast and slow modes
in the closed-loop system. Stability conditions imposed on the fast and slow modes
and small sampling period can ensure that the full-order closed-loop system achieves
the desired properties so that the output transient performances are desired and
insensitive to parameter variations and external disturbances. Finally, an example
with simulation results is presented. Copyright (©)2002 IFAC
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1. INTRODUCTION

In order to design a feedback controller to stabilize
of nonlinear systems a two-step approach is widely
used where a state feedback controller is designed
and then a hign-gain observer is constructed to es-
timate the state of the nonlinear system (Esfandi-
ary and Khalil, 1992; Teel and Praly, 1995; Isidori,
1999). The introducing of the fast hign-gain ob-
server leads to the using of methods of asymptotic
analysis of a singularly perturbed closed-loop sys-
tems (Kokotovié and Khalil, 1986; Kokotovié¢ et
al., 1986; Litkouhi and Khalil, 1985; Saksena et al.,
1984). In (Teel et al., 1998), the problem of digital
implementation of nonlinear systems with input-
to-state stabilizing controller is discussed and, in
(Dabroom and Khalil, 2001), the performance of
systems with state feedback controller and hign-
gain observer under a sampled data is studied.

In contrast to the systems with state feedback con-
troller (Isidori and Byrnes, 1990; Nijmeijer and

van der Schaft, 1990; Esfandiary and Khalil, 1992),
the discussed in this paper approach relates to the
control systems based on the using of higher out-
put derivative (or derivative of the state of nonlin-
ear system, output derivative of the order which
is the same as relative degree of nonlinear sys-
tem) in feedback loop (Vostrikov, 1977; Vostrikov
and Yurkevich, 1991) where fast differentiating fil-
ter (extended analog of the hign-gain observer) is
used. The digital implementation of the (Vostrikov,
1977) controller was discussed in (Mutschkin, 1988;
Fehrmann et al., 1989).

The results of (Vostrikov, 1977) were extended in
(Yurkevich, 1995a) by introducing, instead of sep-
arate differentiating filter, a fast dynamical con-
troller with higher output derivative in feedback
loop. In nonlinear control system with such fast
dynamical controller; the output regulation and
disturbance rejection are achieved under uncer-
tainty by construction of desired fast and slow
modes in the closed-loop system.



Design of digital MIMO control systems based on

discretization of the (Yurkevich, 1995b) continuous-
time fast dynamical controller was discussed in

(Btachuta et al., 1996; Yurkevich et al., 1998) where
a pseudo-continuous-time model of the control loop
with a pure time delay is used for which a linear

continuous-time controller is designed and then

a digital controller follows from the continuous-

time controller discretization. In this paper, as op-

posed to the above works, the discrete-time coun-

terpart of the fast dynamical controller given by

(Yurkevich, 1995a; Yurkevich, 1999) is used and

extended in order to sampled-data controller de-

sign for MIMO uncertain nonlinear time-varying

systems.

The paper 1s organized as follows. First, an ap-
proximate discrete-time model of output behav-
ior for nonlinear system with zero-order hold is
introduced. Second, the output tracking problem
with prescribed output dynamics is transformed
into insensitivity condition and then the control
law structure is given. Third, the way of desired
two-time-scale motion construction in the closed-
loop system as well as expressions to choose of
controller parameters and a sampling period are
presented. Finally, an example with simulation re-
sults 1s given.

2. CONTROL PROBLEM

Let us consider a MIMO non-linear time-varying
system given by

z=f(x,w)+g(e,wu, x0)=xy (1)

where y(t) is the output available for measure-
ment, y € R’ x(t) is the state, # € R", ®(0) =
xy 1s the nitial state, @y € Qz, Qg is a bounded
set, Qz C R", u(t) is the control, u € Qq C
RP, p < n, w(t) is the vector of an unavailable
for measurement external disturbances and vary-
ing parameters, w € Qqp, Qq 18 a bounded set and
f(e,w), g(a, w), h(x,w) are smooth V (&, w) €
Qrw = Q& x Qu, t denotes time, ¢ > 0. The
influence of all external disturbances and varying
parameters of the system is represented by depen-
dence of f(x,w), g(x, w), h(x, w) from w.

Assumption 2.1 Let as assume that a series con-
nection of a zero-order hold (ZOH) and the contin-
uous-time system (1), (2) takes place, where u(t) =
uy, for kTy <t < (k+1)Ty and Ty is the sampling
period.

The control system is being designed to provide
the following condition

lim e, =0 (3)

k—oo

where e, = e(t)|, _ 1, 18 the tracking error, ), =
Tk — Yy, Yy = Y(t)|, = pp, 1S the sample point of
the output y(t). rx = r(t)|, _ ,p, is the sample
point of the reference input »(t).

Moreover, the controlled transients of the each i-th
component y;(t) of the output vector y(¢) should
have a desired performance indices that are sepa-
rately assigned such as overshoot o¢, settling time
t¢ and system type. These transients should not
depend on an external disturbances and varying
parameters of the system (1), (2).

3. SYSTEM WITH ZERO-ORDER HOLD

By differentiating each component of (2) yields

y, = h'(z,w)+ g (z,w)u (4)

where
_ Ay dapyp ' * % 1/
y*_{dtal)"') dtap )h _{hl)"')hp}

w={w,. .. [d*w/dl*]}, o =max{e;}
and the set {aq,...,ap} is the relative degrees.
Assume that w € Qg, Q@ 1s a bounded set.

Assumption 3.1 Let assume that the sufficient
wnvertibility condition of (1),(2)

detg™(z,w) #0 V (z,w) € Qz w
1s satisfied.

In order to receive an approximate discrete-time
model of the system (1), (2) let us introduce the
new time scale tg = ¢/Ty depending on the sam-
pling period 7y. Then

da/dly = To{f(-) + g(-)u}, x(0) ==z (5)

follows from (1). After introducing of the matching
matrix Kg such that

u=Kov and Ko={g"}! (6)

from (4) the expression

d*'yy d*?y.
ag g

dry,
odtg®

}/ =T{h" +v} (7)

follows where T~ = diag{Ty", T3>, ..., Ty "}

If Ty — 0 then dz/dtq — 0 and = & const, h™ ~
const. So, if the sampling period T} 1s suffieciently
small then it may be assumed that at least during
the sampling period Tj the condition h™(x, w) =
const for kTy <t < (k+ 1)Ty is satisfied. Accord-
ingly, as a result of the Z-transform of the each
i-th component of (7) it follows that

goc,(z) OélTooc, {h?yk_kviyk} (8)

Yik = a;l(z=1)



where y; k = yi (D)} = k1> vik = 0i(O = o1y hi g =
hi(x,w), _ .y, and &(z) are Euler polynomi-
als (Sobolev, 1977; Astrém et al., 1984; Blachuta,
1999).

(z) =™ a4 4y, 9)

J
- [+1
aj =y (1) (-tp> )

p=1

y=11, j=1,2,...1, 1=1,2, ..

(10)

(1)

Then for Tj small enough the behavior of y; , can
be approximately discribed by the difference equa-
tion

Yik = Z;(—l)j“ (aiai j) Yik—j
]:
o - 60&;,' *
+7y" Z iy {hiyk—j +oig—j} (12)

o
j=1 ?

Remark 3.1 If Ty = 0 then from (12) the differ-

ence equation

a; ' a;

j=1

follows where its characteristic polynomaial is equal
to (z —1)*.

4. DESIRED DIFFERENCE EQUATIONS

Let us construct such a continuous-time counter-
part of reference model for desired behavior of
output y;(t) that y; = G¥(s)r; where parameters
of the a;-th order stable continuous-time transfer

function
4 opi d pi—1 4 ... d
by p 5" b p 18" - F b

a - a
s taf, s 4 tafy

Gi(s) =

(14)

are selected based on the required output transient
performance indices and bf{o = af’{o- From (14) the
desired stable differential equation

yz(al) = Fi(y,,7i) (15)

follows where y; = [ui, - . -, yZ(O‘z—l)

,rz(pt)]/

]/) T = [7”2')...,
, pi < &g, 75 = y; at the equilibrium of (15).
From (15) it follows that the reference model for
the desired behavior of the output y(t) given by

y.=F(y,7) (16)

_ -1 —1 _
where y = {yl)...,ygal ),yg,...,yz(,% )}’) 7=

{ri,..., rgpl), o, ..., rz(,p")}’. In accordance with (14)

=2 { T =

(17)

is the desired pulse transfer function where

oi(z)|,_, = 1. (18)

From (17) the desired stable difference equation
Yix = F;(Yik, Riy) follows which may be rewrit-
ten similar to (12) as the difference equation with
small parameter

o
. o
Yik = Z;(—l)‘”l (az, . j> Yik—j
]:

+15" Fi(Yi g, Rik, To) (19)

and 7 = ¥y, at the equilibrium for all ¢ =
1,2,...,p.

Theorem 4.1 From (13) and (19) it follows that
lim F;(Y;x, Rix, To)
T—0

= Fi(yl*™Y

7 >

- ')yi)rz(pl)) .- ')rz(l))ri)| t= kTo(QO)

Proof. Obviously

. 1
Tlolino{yi’k —Yik-1}/To = yz( )(t)| ¢ = x1o (21)

Similar to (21), we have that

. - ; (8773 o
i (i =D (=) (a. ) vi k=i H 5"

i=1 i —J

() - (22)

The exp.(20) follows from (15), (19) and (22).

5. INSENSITIVITY CONDITION

Denote e!” = F(y,r) —vy, is the realization error
of the desired output dynamics assigned by (16).
Accordingly, if the condition

el =0 (23)
is held then the behavior of y(#) is described by
(16) and insensitive with respect to the external
disturbances and varying parameters of the sys-

tem (1), (2).

Assumption 5.1 Let as assume that stability or
at the least boundedness of the internal behavior

of (1),(2) under condition (23) takes place.
As the discrete-time counterpart of (23), denote

el = Fik = ik (24)
is the realization error of the desired dynamics
which is assigned by F; ; = F;(Yi, Rix) where

i =1,2,...,p. Then if the requierement

e, =0 Yk=0,1,... (25)



is held then the behavior of y;; is desired and
insensitive to external disturbances and parame-
ter variations in (1),(2). As a result, the discussed
control problem (3) has been reformulated as the
insensitivity condition given by (25).

6. CONTROL LAW STRUCTURE

To fulfil the requirement of (25) the control law is
constructed as the following difference equation

qiza;

vk = Z d; jvi g—j + X (To) 6fk (26)

j=1

where 1 = 1,2,...,p and

/\Z(To) = T()_a’;\i, /N\Z 75 0 (27)
dig+dio+---+dig =1 (28)

Note that in accordance with (28) the requirement
(25) is satisfied at the equilibrium of (26).

7. MAIN RESULTS
7.1 Fast-motion subsystem
Theorem 7.1 Associated with the closed loop sys-

tem (12), (26) as Ty, — 0, the fast-motion subsys-
tem (FMS) of the i-th channel governed by

qi2 o
Vip = E Bi Vi k—j
j=1

QA

I I 604:;' *
RuESY o Thi st (29)
j=1 v
where it is assumed that kY, — b7, =0, yix —
Yik—;~0 Vj =12,...,¢; and

ﬁz}j = diyj — /N\Zfo(hj{ozi !}_1 Vi=1,...,04 (30)
ﬁ@j:diy]’ Viza;+1,...,¢. (31)

Proof. From (24) and (19) it follows that the
closed-loop system eqns.(12), (26) may be rewrit-
ten in the form

a;
. @
Yik = Z(—l)ﬁl (Ozz' ’ j> Yik—j

j=1
o B )
15 D o e+ vk} (32)
j=1 Qi -
qi2 o € .
vig= > {dij— A= }vi;
j=1 Qi

+ XN A{Fi(Yig, Ri o, To) — Z

j=1

€o

(8%

where €4, ; = 01f 7 > ;.

In accordance with (5) and (7) it is easy to see
that if 7y — 0 then in the new time scale ¢ a rate
of output transients of (32) is decreased. So, the
increasing sampling rate induces the fast and slow
modes in the closed loop system (32), (33). If Tg
is small enough then

b= hi e =0, Yig — Yin—j =0 (34)

forall j = 1,2,...,¢;. Finally, from (32), (33), (34)
the equation (29) of FMS follows.

7.2 Control law parameters

The asymptotic stability and desired transient per-
formance indices of v; ; as well as desired settling
time of FMS can be achieved by a proper choice
of the control law parameters d; ; and A;, for ex-
ample, by assigning of desired pole distribution of
the characteristic polynomial of the fast-motion
subsystem (29) for the each i-th channel.

Let ¢; = «; then from (29) it follows the charac-
teristic polynomial AT (z) of FMS in the form

PR () = 2% = s == i, (35)

For example, the settling time tSFMS of FMS of the
i-th channel is equal to «; 7T if the requirement

AFvs(z) = 2% (36)

is satisfied. From (36) and exps.(28),(30) the pa-

rameters of the digital controller follows where
diyj = €Oéz;j{ai !}_1 Y i=1,2,... 04 (37)
N=1, i=12...p (38)

So, if (6) is held then the parameters d; ; of the
digital controller (26) depend only on the rela-
tive degrees {a; }¥_, of the continuous-time system
(1),(2) and Euler polynomials (9).

Usually, the sampling period 7y may be chosen in
accordance with the following requirement
d

To < min
i=1p

where 6 is a desired degree of time-scale separation
between the fast and slow modes and 6 > 10.

7.3 Slow-motion subsystem

Theorem 7.2 If a steady state (quasi-steady state)
in the FMS (29} takes place, i.e.

Vik —Vik—j = 0 V_] = 1)2)---)% (39)



then v; , = v, where
,
a;

s ' €ainj =
YVik = Fi(Yik, Rik, To) — Z iyhz;k—j (40)

;g

j=1

Proof. The proof follows from (28),(29)-(31),(39).

Theorem 7.3 If Ty — 0 and the FMS of (29) is
asymptotically stable then the SMS equation of y;
in the closed loop system (32), (33} is the same as
(19).

Proof. From (36) it follows that FMS is stable. If
To — 0 then after fast ending of FMS transients in
(32), (33) we have that (39) and (40) are fulfilled.
Substituting (39), (40) into (33) yields the SMS

equation which is the same as (19).

Theorem 7.4 If the sampling period Ty — 0 then

a such limit v}, —oN P (), _ .5, — 0 takes place

where
v P (1) = Fiy; (1), vi(1) — b} (2(t), w(1)) (41)

1s the Nonlinear Inverse Dynamics problem solu-

tion which follows from (4), (6), (16), (23).

Proof. From (5) it follows that @y — xx_; —
0 Vi =1,2,...,9; as Tp — 0. Then from (9),
(20) and (40) the expr.(41) follows.

Corollary 7.1 If Ty — 0 then from (41) it fol-
lows that the behavior of y;(t) tends to the solu-
tion of (15). Accordingly, after fast ending of FMS
transients, the controlled output transients in the
closed loop system have a desired output perfor-
mance indices assigned by (16).

8. EXAMPLE

Let us consider the non-linear time-varying system

1 =29 + 23(21 — 23) (23 + 24 — 1)
+(2 + sin(z4))uy + us

&o=—(x1 — @3) (23 + 24 — 21) + w(?)
+(=1)ug + (1 + 0.5sin(z3))us,

#3=x3(x1 — x3) (23 + 24 — 21) (42)
H(2 + sin(zq))ur + us,

Fa=x9 — 12(23+ 24 — 21) + u1 + ua,

Y1 =1 — T3, Y2 = T3.

From (42) it follows that oy = 2,2 =1 and

-1 1+ 0.5sin(z3)

2 4 sin(z4) 1 (43)

g =

The assumption 3.1 is held. It is easy to verify the
boundedness of the internal behavior of (1),(2) un-
der condition (23) on some bounded sets Qg , Q.

Let us assume that Ko = {k;;} ~ {g*}~" where
fiy = —1/3, kis = 1/3, koy = 2/3, kon = 1/3.
Require that the controlled outputs y1(t), y=2(¢)
behave as step response of transfer functions

Gf(s) =1/(ms+ 1)2, Gg(s) =1/(r2s+ 1) (44)

Then pulse transfer functions H{(z), H{(z) of a
series connection of a zero-order hold and continuous-
time systems of (44) are the functions

1-— d1 — Tl_lTodl)Z + dl(dl -1 + Tl_lTo)
22 —2dyz + d?
H3(z) = (1= dy)/(z — da)

where dy = exp(—=Ty/m1), do = exp(—Ty /™). As a
result the discrete-time controller has the form

Hi(z) = ¢

vy =0.5v1 g1+ 0.5v1 2
+ T~y g + 2d1y1 -1 — diy1 k-2
+ (1 —dy — 77 Tody)r s (45)
+di(dy — 1+ 77 " To)r1 g—a)

Vo = Vo -1+ 15 {—y2k + dayo 1
+(1—do)rok_1}

where {u1 k, s 1} = Ko{vig, var} .
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Fig. 1. Step response of outputs in the closed loop
system of the example.
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Fig. 2. Signals of inputs and disturbance in the
closed loop system of the example.



The simulation results of (42) controlled by the
algorithm (45) are displayed in Figs.1,2 for the
time interval ¢ € [0, 3] s, where u(t) = ui ¥V kTp <
t<(k+1)Ty, To=0.058, 71 =058, 72 =04s.

9. CONCLUSIONS

The proposed dynamical controller with the suf-
ficiently small sampling period induces the two-
time-scale separation of the fast and slow modes
in the closed-loop system where after damping of
the stabilized fast transients the behavior of the
output y(t) is desired and insensitive to varia-
tion of parameters of the system and external dis-
turbances. The main advantage of the presented
method is that the knowledge about the relative
degrees {aq,...,a,} and the matrix g* is enough
to controller design. Note that varying parameters
and external disturbances don’t need to be known
as well as their way of entering in the system. It
has been shown that the control signal w(t) con-
verges to the continuous-time Nonlinear Inverse
Dynamics solution as the sampling rate increases.
Presented design methodology is the full discrete-
time counterpart of the design methodology de-
veloped for continuous-time nonlinear control sys-

tems in (Yurkevich, 1995b).
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