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Abstract: Vehicles in formation often lack global information regarding the state of
all the vehicles, a deficiency which can lead to instability and poor performance. In
this paper, we demonstrate how exchange of minimal amounts of information between
vehicles can be designed to realize a dynamical system which supplies each vehicle with
a shared reference trajectory. When the information flow law is placed in the control
loop, a separation principle is proven which guarantees stability of the formation and
convergence of the information flow law regardless of the information flow topology.
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1. INTRODUCTION

Recent years have seen the emergence of control
of vehicle formations as a topic of significant inter-
est to the controls community. Applications span
a wide range, including mobile robotics, traffic
control, satellite clusters and UAV formations.
A recent study (Air Force Scientific Advisory
Board, 1995) identified this area as needing fun-
damentally new control paradigms.

Central to a discussion of cooperative vehicle con-
trol is a determination of the nature of the infor-
mation flow throughout the formation. Informa-
tion exchanged between vehicles can be divided
into two categories: sensed information, meaning

1 Research supported in part by AFOSR grants F49620-
99-1-0190 and F49620-01-1-0460. First author also sup-
ported by an NSF Graduate Research Fellowship and an
ARCS Foundation Fellowship. Address correspondence to
faxa@littongcs.com

the ability of a single vehicle to sense some in-
formation (e.g. relative position) about another
vehicle in a way which involves no action on the
part of that vehicle, and transmitted information,
meaning transfer of information between two vehi-
cles which requires some action on the part of both
the transmitter and recipient of that information.
Sensing and transmission are the means by which
each vehicle acquires the information necessary
to perform its task within the formation. The
sensing and transmitted information topologies
are themselves dynamic, meaning they are subject
to change due to changes in the formation itself
or due to outside influences.

In Fax and Murray (2002), we considered the
effect of the sensing network topology on sta-
bility of a vehicle formation. The sensing paths
were modeled as a graph, and stability concerns
arose when cycles were present in the graph. A
Nyquist-like criterion was proved which used the
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Fig. 1. Vehicle Motion Without Information
Flow.(see text for explanation)

eigenvalues of the Laplacian matrix of the graph
in determining stability of the formation. In that
paper, no information exchange between vehicles
was considered. This paper extends that work by
focusing on improving performance through the
exchange of information between vehicles. From a
performance perspective, sparseness in the sensing
graph means that each vehicle has only a limited
picture of the behavior of the formation, and can-
not therefore make informed control decisions. An
information flow law is presented which realizes a
discrete-time dynamic system whose convergence
enables the vehicles to achieve consensus regard-
ing the formation center. This approach is driven
by the need to ensure stability of the formation
and robustness to changes in the information flow
topology. As such, it differs from traditional ap-
proaches to achieving consensus (Lynch, 1996).

2. INFORMATION FLOW IN VEHICLE
FORMATIONS

2.1 Motivating Example

To motivate our discussion of information flow,
consider the following sample problem. Six vehi-
cles, whose dynamics are double integrators in the
plane, are asked to take up positions on the points
of a regular hexagon relative to one another, and
each vehicle can measure its position relative to
some (small) subset of the other vehicles. Using
the techniques in Fax and Murray (2002), stability
of the formation for a given controller and graph
can be verified. Figure 1 shows the trajectories
the vehicles follow, beginning at the ‘o’ locations
and ending in the ‘x’ locations. The vehicles follow
circuitous trajectories to their final destination,
since no vehicle has a clear picture of what the
overall formation is doing. In this case, the piece of
information each vehicle needs is some sense of the
formation center. Our goal is to devise a means of
information exchange which enables the vehicles

to arrive at a consensus as to the formation center,
and which is robust to uncertainty and changes in
the various network topologies.

2.2 An Information Flow Paradigm

In Fax and Murray (2002), it was assumed that
sensed information was available instantaneously,
and we used a continuous-time model of the
vehicle dynamics. In this paper, we assume that
information takes a fixed time T to travel between
vehicles. To facilitate analysis, each vehicle is
modeled as a discrete time dynamical system:

xi
k+1 = PAxi

k + PBui
k

yi
k = PCxi

k + PDui
k

(1)

where k is the time step of duration T and i is the
vehicle index. As in Fax and Murray (2002), the
error signal used by each vehicle is

zi
k =

1
|JS

i |
∑

j∈JS
i

yi
k − yj

k, (2)

meaning an average of the relative error measure-
ment available to each vehicle. The (presumed
non-empty) index set JS

i represents the set of ve-
hicles visible to vehicle i, and a directed graph can
be generated using those sets. 2 When Equation
(2) is represented as a matrix, it takes the form

zk = L(n)yk, (3)

where L is the Laplacian of the graph, and the
(n) subscript indicates that each element of L
is replaced with In for dimensional compatibility.
The Laplacian is defined as I − D−1A, where A
is the adjacency matrix of the graph, and D has
the in-degree of each vertex along the diagonal
(Chung, 1997). In the future, the subscripts will
be omitted, and dimensional compatibility will be
assumed. Note that the stability results of Fax and
Murray (2002) can be reproduced for discrete time
systems if one uses the discrete Nyquist criterion
rather than the continuous one.

Any information flow consists of vehicles receiving
a transmission from other vehicles and performing
some computation using that information, infor-
mation from previous transmissions, and sensed
information. Each vehicle then transmits the re-
sults of their computation to other vehicles. This
process can be viewed as a discrete-time dynam-
ical system where the states are the information
at each vehicle. can be represented as The ability

2 Fax and Murray (2002) omitted the superscript S, which
is included here to identify it as the sensed information
index set, as opposed to the transmitted information index
set.



of a vehicle to receive transmissions from another
vehicle can be captured in index sets JT

i , which
defines a second directed graph. In this paper,
we will assume that JT

i = JS
i , and omit the

superscript.

The information flow law we are going to investi-
gate takes the following form:

pi
k+1 = zi

k +
1
|Ji|

∑
j∈Ji

pj
k (4)

or, in vector form:

pk+1 = Gpk + Lyk, (5)

where G = D−1A = I − L. Each vehicle’s new
information is thus based on the average of the
sum of sensed and transmitted information from
other vehicles.

2.3 Properties of the Information Flow Law

As discussed in detail in Fax and Murray (2002),
G is a nonnegative matrix whose Perron root
is 1 and whose eigenvalues must lie in the unit
circle. The graph is termed strongly connected
if any two nodes can be joined by a path, and
aperiodic if the lengths of cycles in the graph do
not have a greatest common divisor other than 1.
We assume the graph to be strongly connected 3 ,
which implies that G has positive left and right
Perron eigenvectors el, er. Define E = ere

T
l , where

el, er are chosen such that eT
r el = 1, and let

Ḡ = G − E. We will make use of the following
two results (Horn and Johnson, 1985):

Lemma 1. Gn = E + Ḡn.

Lemma 2. The eigenvalues of Ḡ are the eigenval-
ues of G with the Perron eigenvalue replaced with
a zero eigenvalue.

We now derive the following result:

Theorem 3. Suppose the directed graph G is
strongly connected and aperiodic, and let the in-
put yk be fixed in time. The steady state value
of the dynamical system in Equation (5), when
p0 = 0, is

pi
ss = yi −

N∑
j=1

ei
ly

i (6)

where ei
l is scaled so that

∑
ei
l = 1.

3 This assumption can be relaxed if a path exists from any
node to a single strongly connected subgraph.

PROOF. Consider the evolution of Equation
(5):

pk = Gkp0 +


 k∑

j=0

Gj


 Ly (7)

Assuming that p0 = 0, we wish to find pss =
limk→∞ pk, if such a limit exists. Substituting into
Equation (7) via Lemma 1, we can replace Gj with
E+Ḡj . Recalling that E = ere

T
l ,and that L shares

eigenvectors with G, it is clear that er and el are
the eigenvectors of L corresponding to the zero
eigenvector. Therefore, EL = ere

T
l L = er0 = 0,

and pk can be rewritten as

pk =


 k∑

j=0

Ḡj


 Ly (8)

Because G is assumed strongly connected and
aperiodic, all non-Perron eigenvalues of G have
modulus strictly less than one (see Fax and Mur-
ray (2002)). Therefore, by Lemma 2, ρ(Ḡ) < 1.
Equation (8) therefore converges and can be writ-
ten:

pss = (I − Ḡ)−1Ly (9)

= (L + E)−1Ly (10)

= (I − (L + E)−1E)y (11)

Now Ler = 0, and Eer = (ere
T
l )er = er(eT

l er) =
er, so (L + E)er = er ⇒ (L + E)−1er = er, and
the above equation can be rewritten

pss = (I − ere
T
l )y (12)

Because the rows of G sum to one, er = 1T , and
el is scaled such that

∑
ei
l = 1. The columns

of E are therefore constant, and the rows are
each eT

l . Therefore, Equation (12) is equivalent
to Equation (6). Proven.

The information flow presented above supplies
each vehicle with a formation center defined by a
graph-dependent weighting. It can be considered
as the simplest case of a more general form:W

qk+1 =
R∑

i=0

aiqk−i +
R∑

i=0

biGqk−i + Lyk

pk =
R∑

i=0

ciqk−i

(13)

In this version, each vehicle computes its current
information using information from several previ-
ous time steps. (This formulation can also be used
to account for the presence of additional trans-
mission delays.) As in the previous case, we wish
to determine both stability and the convergence
properties.
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Fig. 2. Block diagram of Information Flow

Theorem 4. The system in Equation (13) is (neu-
trally) stable if the transfer function

F (z) =
∑R

i=0 biz
R−i

zR+1 − ∑R
i=0(ai + bi)zR−i

(14)

is (neutrally) stable and its Nyquist plot avoids
encirclement of the negative inverse of any of the
nonzero eigenvalues of L.

PROOF. Take the z-transform of Equation (13),
setting aside yk, and rewrite it as follows:

zq(z) =
R∑

i=0

(ai + biG) z−iq(z) (15)

=
R∑

i=0

(ai + bi − biL)z−iq(z) (16)

or, if we collect terms not including L and multiply
both sides by zR,

q(z) =
−∑R

i=0 biz
R−i

zR+1 − ∑R
i=0(ai + bi)zR−i

Lq(z). (17)

This equation is seen to be a negative feedback
loop with F (z) and L in the forward path, equiv-
alent to the lower loop in Figure 2. This is the
same format as the system of vehicle formations
examined in Fax and Murray (2002), where it was
shown that the stability of this system is given by
the Nyquist criterion stated above. Because one
set of eigenvalues of this system corresponds to the
open-loop dynamics, this system can be at best
neutrally stable if F (z) is itself neutrally stable.
Proven.

We now wish to determine the steady-state per-
formance of a given information flow law. We will
set ci = bi, which will ensure that the information
flow loop has unity DC gain and will be useful in
proving stability in Theorem 6. We further assume
that F (z) has all poles on the interior of the unit
circle with the possible exception of a pole at 1,
and that the polynomial

∑R
i=0 aiz

R−i also has
roots in the interior of the unit circle.

Theorem 5. If F (z) stabilizes L in the sense of
Theorem 4, and under the above assumptions,
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Fig. 3. Information Flow Law Nyquist Plots.

pss = c
(
I − cE − (1 − c)

(
I − cḠ

)−1
G

)
y (18)

where a =
∑R

i=0 ai, b =
∑R

j=0 bj , and c = b
1−a .

The proof, which can be found in Fax and Murray
(2001), uses the Final Value Theorem along with
manipulations similar to those in Theorem 3.

Note that c = 1 corresponds to a + b = 1, which
implies that the system has a pole at 1. When
c = 1, we recover the same steady-state result we
had derived earlier. When c < 1, the steady-state
is offset by an additional term. Note that when
c = 1, the vehicles all agree on the location of
the formation center (expressed in each vehicle’s
coordinates), while when c < 1, they do not.
We say that when c = 1, the vehicles achieve
consensus on formation center, whereas when c �=
1 they do not. The coincidence of the kernel of L
with the Perron eigenvector of G prevents secular
growth in p. However, the presence of noise or
sensor errors has the potential to introduce drift.

To understand the effects of shaping the informa-
tion flow, consider two examples. The first infor-
mation flow law is in Equation (5). In this case,
following Equation (14) F1(z) = 1

z−1 . The second
is given by a0 = 1.0625, a1 = −0.2313, b0 =
0.1875, b1 = −0.0188, which corresponds to
F2(z) = 0.1875(z−0.1)

(z−0.25)(z−1) . The pole at 1 means that
c = 1 in both cases. Figure 3 shows the Nyquist
plot for these two cases. The solid line, represent-
ing F1(z), lies along the −0.5 vertical. Points on
that line correspond to periodic graphs (see Fax
and Murray (2002)), which confirms Theorem 3.
The dashed line, representing F2(z), lies entirely
to the right of the −0.5 vertical, meaning that
it will stabilize any graph. For sparse, though
aperiodic graphs, F2(z) displays a much smoother
transient response.



Ψ =




P̂A 0 0 0 0

−ĤBLP̂C ĤA + ĤBGĤC 0 0 0

0 −K̂B∆ĤC K̂A + K̂BP̂D∆K̂C K̂B∆P̂C 0

0 −P̂BK̂D∆ĤC P̂B∆K̂c P̂A + P̂BK̂D∆K̂C 0

ĤBLP̂C −φĤC ĤBP̂D∆K̂C ĤB∆P̂C ĤA


 . (27)

3. INFORMATION FLOW IN THE LOOP

The information flow law supplies each vehicle
with the information it cannot sense: a (graph-
dependent) formation center about which to do
control. A natural strategy is to use p as the input
to the controller K(z) rather than y, as shown in
Figure 2. As before, we can analyze stability with
respect to uncertainties in the graph by isolating
L and applying the Nyquist criterion. In this case,
one determines stability by analyzing the Nyquist
plot of

F (z)(1 + P (z)K(z)). (19)

For a given plant and controller, the information
flow loop can be designed to provide stability.
However, care must be taken in interpreting the
stability margins derived from this plot. The gain
and phase margins of this plot do not correspond
to uncertainties in the plant in the typical fashion
due to the location of P (z) in the transfer func-
tion, but to uncertainties in L. Small variations
in P (z) can produce unexpected perturbations of
the Nyquist plot. In other words, the coupling
between the dynamics of the information flow,
controller, and plant can produce unexpected re-
sults.

The information flow law presented earlier is nec-
essarily reactive; it does not anticipate the mo-
tion of the cluster. A logical means of improving
performance of the information flow loop is to
supply the information flow loop with informa-
tion with feedforward information. This section
explores augmentations to the information flow
loop which follow this paradigm.

Recalling that the information represents an av-
eraged position of the vehicles’ positions, a logical
choice for a feedforward signal is the anticipated
change in vehicle position. This can be calculated
by using each vehicles’ control signal u(z) as the
input to a model of the plant P̃ (z), and differ-
encing the output. The resulting signal is then
transmitted in addition to the signal q and used by
each vehicle as a correction term to p. Of course,
this equation is only current if the control signal
is delayed by a time step before application to the
plant to allow a time step for the information to
reach the other vehicles. Alternatively, each vehi-
cle could delay the use of its sensed information
until it receives the transmitted information from
that vehicle. Generally, the feedforward correction
term will take on the form

w(z) = H(z)P̃ (z)u(z). (20)

When H(z) is chosen properly, the following result
can be derived:

Theorem 6. Choose H(z) = (F (z) + 1)−1 and
suppose the feedback interconnection of P (z) and
K(z) is well-posed. Then the formation is stabi-
lized if F (z) stabilizes L and K(z) stabilizes P (z).

Using our definition of F (z), we can write H(z)
as

H(z) =
zR+1 − ∑R

i=0(ai + bi)zR−i

zR+1 − ∑R
i=0 aizR−i

. (21)

The assumption that the coefficients of the nu-
merator sum to 1 imply that H(z) has a zero at 1,
which corresponds to differencing the input signal.
Note that H(z) is stable by the assumptions on
Theorem 5.

PROOF. We prove the presence of a separation
principle for the system of equations, through the
use of a change of coordinates. The state-space
equations of motion for the plant are given in
Equation (1). The predictor P̃ (z) is presumed to
be identical to the plant P (z), and has the same
equations of motion with x, y replaced by x̃, ỹ. The
dynamics of the controller will be represented as

vi
k+1 = KAvi

k + KBpi
k

ui
k = KCvi

k + KDpi
k.

(22)

Defining

HA =




0 I . . . 0
...

...
. . .

...
0 0 . . . I

aRI aR−1I . . . a0I


 , (23)

Hc =
[
bRI . . . b0I

]
, and HB =

[
0 0 . . . I

]T , we
can write the information flow law of Equation
(13) with the feedforward term added in vector
form as

q̄k+1 = ĤAq̄k + ĤBG(ĤC q̄k + wk) + ĤBLyk

pk = ĤC q̄k + wk
(24)

and the feedforward correction term of Equation
(20) as

r̄k+1 = ĤAr̄k + ĤB ỹk

wk = −ĤC r̄k + ỹk.
(25)



If one solves Equations (1),(22),(24),(25) for the
states, the resulting system can be written as

Xk+1 = ΨXk. (26)

If the states are chosen according to the linear
combination Xk = [xk − x̃k, r̄k − p̄k, vk, x̃k, p̄k]T ,
then Ψ takes the form found in Equation (27),
transformation where φ = ĤB(P̂DK̂D∆+G), and
∆ = (I − P̂DK̂D)−1, which is invertible by as-
sumption of well-posedness of the interconnection.

Stability is thus determined by stability of the
blocks along the diagonal of Ψ. The first, PA, is
neutrally stable by assumption. It is also assumed
that HA, HC are chosen to (at least neutrally)
stabilize the second block, HA + HBGHC . The
third block along the diagonal, which comprises
the third and fourth columns/rows, is stable if
K(z) stabilizes P (z). The final block is stable by
the assumptions of Theorem 5. Proven.

If c �= 1, the vehicles’ final positions will incor-
porate the errors of Equation (18) as well. The
position of the vehicles will also depend on the
ability of the information flow law to track the
natural motion of the vehicles. When the vehicles’
natural motion displays secular drift or oscillation,
the quality of the reference signal will depend on
the ability of the information flow law to track
signals at the relevant frequencies. Additionally,
note that the motion of the formation is sensitive
to mismatches between initial conditions of the
vehicle and predictor. This can lead to drift of
the cluster due to mismatches in velocity. It may
be possible to improve upon this through the use
of an observer which will prevent the vehicle and
predictor from diverging. The zero at 1 in H(z)
corresponds to differencing the input, which gen-
erally amplifies signal noise. However, the input
to H(z) is derived by integrating u, so no net
differencing when computing w.

We now return to the sample problem posed ear-
lier. Figure 4 shows the trajectories when the
information flow loop is enabled. Two trajectories
are overlaid: the solid line shows the trajectories
when the information flow loop and the vehicle
controller are enabled simultaneously, and the
dashed line shows the trajectories when the in-
formation loop runs for 1 second prior to enabling
the controller. In the first case, the trajectories are
much smoother than when no information is used,
but still show some curving caused by application
of control prior to convergence of the information
loop. In the latter, the vehicles follows straight
lines to their destinations. The final destinations
in each case do not differ, despite lack of absolute
position information, due to the decoupling of the
information flow loop from the predicted motion
of the vehicles.
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Fig. 4. Vehicle Motion With Information Flow
(See text for explanation).

4. CONCLUSIONS

The results in this paper rely on two key ideas.
The first is the use of dynamical systems as a
paradigm for understanding information exchange
between vehicles, and the design of a dynamical
system which enables the vehicles to achieve con-
sensus on the formation center. A key feature of
this approach is that no vehicle need have knowl-
edge of the global structure of the formation in
order to play its part. This renders the approach
highly robust to changes in that structure. The
second is the use of feedforward compensation
to render the sensed and transmitted information
timely. Naturally, this depends on a good model
of the vehicle dynamics. Future research will focus
on extending these core notions to a broader range
of plants, controllers, and objectives, as well as
issues such as variable time delays in transmission,
as might occur in control over networks.
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