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Abstract: Model Predictive Control (MPC) is presented as a robust, flexible decision
framework for dynamically managing inventories and meeting customer demand in
demand networks (a.k.a. supply chains). Ultimately, required safety stock levels
in demand networks can be significantly reduced as a result of the performance
demonstrated by the MPC approach. The translation of available information in the
supply chain problem into MPC variables is demonstrated with a two-node supply
chain example. A six-node, two-product, three-echelon demand network problem
proposed by Intel is well managed by a partially decentralized MPC implementation
under simultaneous demand forecast inaccuracies and plant-model mismatch.
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1. INTRODUCTION

Recent literature suggests that billions of dol-
lars in cost reductions can be achieved through
improved management of semiconductor supply
chains (Kempf et al., 2001; PriceWaterhouseC-
oopers, 2000). Semiconductor demand networks
are particularly challenging since lead times for
products often range on the order of months, and
safety stock levels that cover as much as a year’s
worth of demand have traditionally been held (Lee
et al., 1997). In this paper, an approach using
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Model Predictive Control is proposed as a means
to manage supply chains in a robust manner in the
presence of inaccurate production leadtime and
demand forecast estimates. The MPC framework
is shown to track a qualitatively realistic demand
pattern in spite of these inaccuracies, and make
use of safety stock levels that are well below levels
suggested by industry heuristics.

A supply chain (a.k.a. demand network, or value
web) consists of the interconnected components
required to transform ideas and raw materials into
delivered products and services. The entire struc-
ture is organized and managed with the goal of
maintaining a high level of customer service, while
minimizing costs and maximizing profits. Compa-
nies no longer compete against other companies.
Instead, supply chains compete against other sup-
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ply chains. The supply chain that gains market
share does so by providing customers the right
product, in the right amount, at the right time, for
the right price, and at the right place (Bodington
and Shobrys, 1999; Kempf et al., 2001).

Recently, work utilizing Model Predictive Control
has been found to provide an attractive alterna-
tive for inventory control (Tzafestas et al., 1997),
and supply chain management (Flores et al.,
2000; Perea-Lopez et al., 2000). These approaches
are conceptually different and require less de-
tailed knowledge in comparison with cost-optimal
stochastic programming solutions which require
many “what-if” cases to be run and examined
by highly skilled professionals (Kafoglis, 1999).
Yet MPC offers the same flexibility in terms of
the information sharing, network topology, and
constraints that can be handled.

In the next section of this paper, a translation of
the available information in a supply chain setting
to process control variables is demonstrated to
provide well behaved management of a two-node
supply chain. In the third section of the paper,
a six-node, two-product, three-echelon network
developed to mimic the back end configuration of
a semiconductor chain is robustly managed un-
der realistic information inaccuracies. The paper
concludes with a summary of the ideas presented.

2. MPC FRAMEWORK

2.1 Model Predictive Control

Model Predictive Control has long been the pre-
ferred algorithm for robust, multivariable control
in the process industries, with the number of im-
plementations numbering in the thousands. The
popularity of MPC stems from the relative ease
with which it can be understood, and its ability
to handle input and output constraints (Garćıa
et al., 1989). The objective function of an MPC
controller can be written as

J =
p∑

�=1

Qe(�)(ŷ(k + �|k)− r(k + �))2 (1)

+
m∑

�=1

Q∆u(�)(∆u(k + �− 1|k))2

+
m∑

�=1

Qu(�)(u(k + �− 1|k)− utarget(k + �− 1|k))2

The three terms in the MPC cost function penal-
ize predicted setpoint tracking error, excess move-
ment of the manipulated variable, and deviation
of the manipulated variable from a target value,
respectively. The MPC optimization problem can
be written

min
∆u(k|k)...∆u(k+m−1|k)

J (2)

s.t.

umin ≤ u(k + �− 1|k) ≤ umax, (3)
∆umin ≤ ∆u(k + �− 1|k) ≤ ∆umin, (4)

The problem can be modified to include output
constraints as well. The optimization problem is
readily solved by standard quadratic program-
ming (QP) algorithms. Only the first control ele-
ment of the solution is implemented. At the next
time step the optimization problem is solved again
with updated information from the system. This
is referred to as the receding-horizon property of
MPC as illustrated in Figure 1. Note that the
MPC controller explicitly uses a model relating
the inputs and measured disturbances to the out-
puts.

k k+M-1 k+P
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High control constraint
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Fig. 1. MPC receding horizon philosophy.

2.2 MPC Problem Definition

Factory Retailer CustomerFactory Retailer Customer

Fig. 2. Two-node network material flows.

In this section, the available information in a
supply chain setting is re-classified in a process
control sense. This classification assigns aspects
of the demand network problem to process control
variables as shown in Table 1. Figure 2 illustrates
the material flows from the Factory to the Retailer
and on to the Customer. Both nodes are modeled
with a mass balance

IA(k + 1) = PA(k)− S2A(k) + IA(k), (5)

where

PA(k) = S1A(k −Θp). (6)

IA is the inventory of A; S1A is the incoming
stream of A; S2A is the outgoing stream of A;



Θp represents the processing delay; PA(k) is the
material which has completed processing at time
k of species A. Figure 3 provides a graphical
representation of the information transfer between
controllers and nodes of the two-node system for
MPC configuration #1.
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Fig. 3. Two-node network MPC information flows.

Current customer demand is fed directly to the
retailer and the retailer can immediately fill that
demand that day. It is assumed that a demand
forecast is known although it may be have biased
or random error as dictated by the simulation
conditions. The demand (measured disturbance)
and demand forecasts (estimated future measured
disturbances) are fed to the first echelon MPC
controller. Using the current inventory (outputs)
information from the retailer, the first echelon
MPC controller decides what orders (inputs) for
product A should be placed with the factory, and
what the order forecast (estimated inputs) will
look like. This order forecast is shared with the
second echelon MPC controller.

The second echelon MPC controller uses the order
forecast (now an estimated future measured dis-
turbance) from the first echelon MPC controller,
and the inventory information (outputs) from the
factory to decide on production starts (inputs) for
the day. Both MPC controllers contain models
that determine the effect that orders (measured
disturbances) from downstream entities have on
the future inventories (estimated outputs) in their
node. This model also relates orders to the factory
(inputs for the first echelon MPC controller) and
production starts (inputs for the second echelon
controller) to the inventory levels (outputs). The
inventory targets (setpoint trajectories) are a for-
ward time shifted version of the estimated future
measured disturbances (plus safety stock), for the
first echelon controller. For the factory, the inven-
tory targets are an exact replication (plus safety
stock), of the estimated measured disturbances for
the factory since there is no direct feed through
(i.e. orders placed today are only on backorder if
not filled tomorrow).

The MPC framework is evaluated with the two-
node system under plant-model mismatch. The
production leadtime in the Factory is actually 3

Table 1. Variable mapping for MPC
controllers.

Process Demand
Control Variable Network Information

setpoints r inventory targets
of species A

outputs y inventories of species
A minus cumulative

outstanding backorders

estimated outputs ŷ forecasted inventories
of species A

measured demand or orders for species
disturbances ud A being placed at the node

estimated future forecasted demand or
measured orders for species A

disturbances ûd being placed at the node

estimated inputs û forecasted orders for
species A being

placed at the upstream node

inputs u orders for species A being
placed at the upstream node
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Fig. 4. Retailer Responses and Metrics, Two-Node
Example, No Move Suppression

units, while the Factory MPC controller is imple-
mented with a production leadtime of 2 units. The
Retailer MPC controller is implemented as if there
was no shipping delay between the Factory and
the Retailer, however in the simulation there is 1
unit of delay. There is no production delay in the
Retailer for either simulation or controller. First
the controllers are implemented with no move
suppression. The time series and metrics for the
Retailer are shown in Figure 4. Inventory levels
approach unthinkable levels, and customer service
could be better. Using move suppression values of



150 for both controllers, the system is stabilized,
and the 1500 units of safety stock are sufficient to
eliminate backorders as shown in Figures 5 and 6.
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Fig. 5. Retailer Responses and Metrics, Two-Node
Example, With Move Suppression

2.3 Performance Under Plant-Model Mismatch
And Biased Forecast Error

The performance and robustness of the MPC
control system will now be demonstrated on a
six node network simulated using realistic plant-
model mismatch for the Assembly/Test Nodes, bi-
ased forecast error, and a realistic demand profile.
These conditions were recommended for evalua-
tion by Intel Corp. on a six-node, two-product,
three echelon simulation shown in Figure 7. The
simulation mimics the packaging, distribution and
retail sale of semiconductor products, in each of
the three echelons.

Experience with the actual performance of Assem-
bly/Test nodes and the estimated lead times by
facility personnel, suggest that the facility person-
nel traditionally provide themselves a lead time
buffer of one day. So for example, if in reality
the process takes 9 days to complete, a 10 day
lead time estimate will be quoted to others in the
organization. Thus, a 9 day actual/10 day esti-
mate plant-model mismatch is adopted for both
Assembly/Test facilities.
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Fig. 6. Factory Responses and Metrics, Two-Node
Example, With Move Suppression
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Fig. 7. Six-node network material flow.

The Sales and Marketing personnel have been
generally known to determine forecasts which are
biased in an optimistic manner. As an example,
the sales forecast for the next time period might
be 11, 000 units, when in fact the actual sales will
be 10, 000 units. To mimic this type of forecast
bias, all demand forecasts passed to the Retailer
level MPC controller are biased by +1000 units.

Lastly, products have been observed to follow de-
mand patterns which may be correlated at times,
and uncorrelated at other times. To mimic this
type of behavior, the demand patterns for Product
A and Product B follow correlated, deterministic
steps up until time 110. The remainder of the
time, the demand patterns remain uncorrelated.
This behavior can be observed in Figure 9.



The MPC controllers for the Warehouse and Re-
tailer echelons of the network have to be modified
slightly to account for the cross-shipment routes
that can occur between echelons. The problem
inputs now number eight, since there are two ship-
ping lanes from each node and each lane can trans-
port either or both products. To handle the extra
degrees of freedom this brings to the problem,
the penalties Qu for the cross-shipment routes
are purposefully set high, so these routes are not
favored in the cost function. This penalty also
allows for a unique solution to the MPC problem.
The information flows for the six-node problem
under MPC supervision are found in Figure 8.
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Fig. 8. Information flow for management of the
six-node Intel network.
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products A and B.

The experiment is run with a value of 300 for
all move suppression parameters Q∆u, 0 for all
penalties for values other than zero for direct
shipment Qu, and a penalty of 100 for all penalties
for values other than zero for cross-shipments Qu.
Table 2 holds the prediction horizons Np and
control horizons Nu for all three MPC controllers.
Safety stock is set at 5, 000 units per product,
per node. All inventory control error weights Qe
are left at 1. All entities use a “pecking order”
dispatch rule. The orders of Warehouse 1, Retailer

1, and Customer 1 take precedence over the orders
of the corresponding counterparts. Secondary, Or-
ders for Product A take precedence over orders for
Product B. Figures 10 and 11 demonstrate the
performance of this approach with plots of inven-
tories, demands, shipments, and factory starts.

Table 2. Prediction and control horizons
used in six node controllers.

Parameter Echelon #1 Echelon #2 Echelon #3

Np 49 41 33
Nu 42 34 12

At time 1, the Retailer MPC controller adjusts
orders and order forecasts to the upstream nodes
to start bringing in more product, since the de-
mand forecast is now 11, 000 even though the
actual amounts being demanded are 10, 000. Be-
cause of the move suppression, the increases in
order amounts are less than 1, 000. The increase in
orders is evident in the increase in direct and cross
shipments from the Warehouse echelon. Soon the
Retailer MPC echelon realizes the actual amount
supplied to customers is not increasing as sug-
gested by the forecast and the Retailer MPC ad-
justs to account for the forecast error and reduce
inventory.

In the first few time units, inventories in the Fac-
tory echelon and Warehouse echelon are drained
below their target levels. The Factory echelon
MPC controller now observes the effects of the
plant-model mismatch, since changes in starts
show up sooner than expected. The inventory
levels of the Assembly/Test nodes fluctuate, but
the fluctuation remains at reasonable levels. No
backorders take place throughout the entire exper-
iment. This is rather impressive, since the general
rule of thumb practiced for this network requires
a safety stock level equivalent to between two and
four times the expected demand for the next time
period (e.g. if tomorrow’s demand is expected to
be 10, 000 units, safety stock held today may range
from 20, 000 to 40, 000 units).

Note that the cross-shipments in this example
are used whenever there are rapid changes in
the order/demand forecasts. The MPC controllers
make use of the cross-shipments, since the costs
associated with the move suppression weightings
of the direct shipments become comparatively
large at these times. This may make sense not only
from an optimization standpoint, but in a realistic
setting it may also allow nodes to hedge against
uncertainties or disturbances in transportation
links or nodes connected by the direct shipment
lanes.
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Fig. 10. Inventories (solid) and demand (dashed)
by facility and product; Assembly/Test plots
include starts (dash-dot).

3. CONCLUSIONS

By using a systems/controls perspective, it is pos-
sible to stabilize supply chains in the presence of
data inaccuracies or plant-model mismatch. The
combination of move suppression and shared order
forecasts allow nodes in the supply chain to appro-
priately buffer the inventory before large changes
in demand take place at the retailer. An MPC
framework can even handle demand networks of
size and topology relevant to industrial needs as
demonstrated through the successful management
of the problem proposed by Intel Corp.

4. REFERENCES

Bodington, C. E. and D. E. Shobrys (1999). Op-
timize the supply chain. In: Advanced Pro-
cess Control and Information Systems for the
Process Industries (L. A. Kane, Ed.). pp. 236–
240. Gulf Publishing Company. Houston, TX.

Flores, M. E., D. E. Rivera and V. Smith-Daniels
(2000). Managing supply chains using model
predictive control. In: AIChE 2000 Annual
Meeting, Nov. 12–17. Los Angeles, CA. paper
262f.
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