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88040-900 Florianópolis, SC, Brazil
(On leave at Lab. Biotechnologie de l’Environnement/INRA, Narbonne, France)

e-mail: trofino@lcmi.ufsc.br

∗∗ Department of Systems and Control
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Abstract: This paper presents an LMI based design method for static output feedback
controllers with a guaranteed H2 performance. The method can be applied to a
class of continuous-time linear systems with either rational or polynomial parameter
dependence, provided that the parameters and their rate of variation are bounded by
a given polytope. Stability as well as a H2 performance bound are guaranteed via a
rational parameter-dependent Lyapunov function. The method can be used to design:
robust controllers, LPV controllers, and non-fragile controllers with prescribed ranges
of errors that can be tolerated in the implementation of the designed control gains.
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1. INTRODUCTION

The problem of designing robust controllers has
been largely studied in the last decade. LMI
based design techniques for many important state
feedback and full-order observer based control
problems are now available (Boyd et al., 1994).
Most of these LMI techniques are based on the
notion of quadratic stability and the controller
is parameterized in terms of some of the LMI
decision variables, where typically the matrix of
the Lyapunov function is among these variables.

1 This work was supported in part by “Conselho Nacional
de Desenvolvimento Cient́ıfico e Tecnológico - CNPq”,
Brazil, under PRONEX grant No. 0331.00/00. The work of
C.E. de Souza and A.Trofino has been supported by CNPq
under grants 30.1653/96-8/PQ and 30.0459/93-9/PQ.

Recently, de Oliveira et al. (1999) proposed an
interesting LMI solution for control problems in
which the matrix of the Lyapunov function is not
among the decision variables that characterize the
controller. This is an important feature because it
allows for handling constraints on the controller
structure, as for instance, static output feedback
and decentralized control requirements, without
having to impose hard constraints on the struc-
ture of the Lyapunov function. This new con-
troller parameterization is also useful in solving
the problem of finding a fixed controller satisfying
multiple performance requirements. The idea is
that if one let each of the performance objectives
be associated with a different Lyapunov function,
a less conservative result should be expected. In
the case of continuous-time systems, a result along
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the lines of de Oliveira et al. (1999) has been
recently presented in Shaked (2001) however, to
the authors’ knowledge, the continuous-time case
problem has not yet been fully resolved.

This paper presents an LMI based controller de-
sign technique that can be applied to a class
of continuous-time systems described by a state-
space model with rational parameter dependence
and has the following characteristics:

• The matrix of the Lyapunov function is not
among the decision variables that character-
ize the controller.

• The stability of the closed-loop system as
well as a H2 performance bound are estab-
lished via a rational parameter-dependent
Lyapunov function.

• The parameters and their rate of variation
are supposed to be bounded by a given poly-
tope.

• The method can be used to design static
output feedback controllers, including decen-
tralized control laws.

• The controllers may be of three types: robust
(fixed control laws), LPV (gain scheduled
control), and non-fragile (robust against a
prescribed range of errors tolerated in the im-
plementation of the designed control gains).

The proposed LMI design method is dependent on
a scaling parameter in a non-convex manner. To
cope with this difficulty this scalar is fixed through
a gridding technique. An important feature is that
the usual convex LMI conditions, which applies for
the nominal system are recovered as a special case
when this scalar is sufficiently large.

The paper is organized as follows. The class of
systems and the structure of the control law are
presented in the next section. Section 3 introduces
the H2 performance index and its upper-bound
which will be used in the control design. The main
results are presented in Section 4 for the design of
static output feedback controllers. These results
are then extended in Section 5 for the design of de-
centralized controllers. Some concluding remarks
end the paper.

Notation. The notation used in this paper is
quite standard. R

n denotes the n-dimensional
Euclidean space, R

n×m is the set of n × m real
matrices, Tr{· · ·} denotes matrix trace, and the
notation S >0 for a real matrix S, means that S
is symmetric and positive definite. The notation x
and x refers to a fixed upper and lower bounds on
the variable x, respectively. For a symmetric block
matrix, the symbol � is used to represent the
block partitions outside the main diagonal block
which can be deduced by symmetry.

2. SYSTEM DEFINITION

Consider the system

ẋ(t) = Θ′
xAx(t) + Θ′

xBww(t) + Θ′
xBuu(t)

z(t) = Θ′
zCzx(t) + Θ′

zDzu(t)
y(t) = Cyx(t)

(1)

where x ∈ R
n denotes the state, w ∈ R

nw is
the disturbance input, u ∈ R

nu is the control
input, z ∈ R

nz is the H2 performance output,
and y ∈ R

ny is the measured output. Bu, Cy

and Dz are known constant matrices, whereas the
matrices A, Bw and Cz may be affine functions of
some possibly time-varying parameters θ1, . . . , θq,
that will be represented by the vector

θ =
[
θ1 . . . θq

]′ ∈ R
q (2)

For the sake of notation simplicity, throughout
the paper the dependence of θ on the time t
will be omitted. The matrices Θx and Θy are
rational matrix functions of the parameters with
the following structure

Θx = Θ−1
a Θb Θz = Θ−1

c Θd (3)

where Θa, Θc, Θb, and Θd are affine matrix func-
tions of the parameters. It is supposed that for all
admissible values of the parameters, the matrices
Θa and Θc are nonsingular and Θb is of full column
rank. The former assumption is a regularity condi-
tion of the representation (3), whereas the latter is
a technical assumption regarding the system rep-
resentation (1). If θb is not of full column rank, it
turns out that the state matrix of the closed-loop
system resulting from any static output feedback
control law will be singular and hence the system
(1) will not be stabilizable.

Notice that the class of system (1) is general
enough to include the so-called LFT represen-
tation (Boyd et al., 1994) and thus any polyno-
mial and rational dependence on the parameters
(El Ghaoui and Scarletti, 1996) may be repre-
sented in the form as in (1). The state matrix of an
LFT representation has the form A = A1+A2(I+
A3)−1A4 where A1 and A4 are fixed matrices
and A2 and A3 are affine matrix functions of the
parameters. With the choice

A =
[

I
A4

]
, Θ′

a =
[

I 0
0 I + A3

]
,

Θ′
b =

[
A1 A2

]
it can be easily verified that A = Θ′

xA.

Further, notice that with suitable partitions of the
matrices Θa, Θb, A, Bu, and Bw it is possible to
handle the case where the state, control input,
and performance input matrices are subject to
different parameters.



In this paper we are concerned with the problem
of determining a control law of the type

u = K(θ)y, K(θ)=Θ′
uK =K0+

qu≤q∑
i=1

θiKi (4)

where K is a fixed matrix gain to be determined
and Θu is an affine function of a set of parameters
{θi}. The role of the matrix Θu is discussed in the
sequel.

With a proper choice of Θu we may design a fixed
robust controller (if Θu is chosen as the iden-
tity matrix, or an LPV controller (Apkarian and
Gahinet, 1995; Blanchini, 2000; Packard, 1994) if
Θu contains the scheduling parameters, or even
a non-fragile controller if Θu contains fictitious
uncertain parameters representing the error that
can be tolerated in the implementation of the de-
signed control gains. The idea is that the designed
control gain is Ki but the implemented one is Kiθi

for some θi in a given range θi ≤ θi ≤ θi repre-
senting the allowed deviations with respect to the
designed value, which corresponds to θi = 1. For
design purpose, these parameters can be viewed as
fictitious time-invariant uncertainties. The stabil-
ity of the closed-loop system must then be assured
for all possible values that the applied control
gain may take in the specified range. This type of
control law is referred to in the literature as non-
fragile control (Keel and Bhattacharyya, 1997).

To design an LPV controller we let {θi} to repre-
sent the set of scheduling parameters and Θu to be
a given affine function of them. The only knowl-
edge the proposed design method requires to solve
the problem is a polytope specifying the admissi-
ble values of the scheduling parameters and their
rate of variations. Observe that the information
on the rate of variation is used in the controller
design but the controller implementation does not
require the on-line knowledge of θ̇i.

Hereafter, it is assumed that the parameters
and their rate of variations belong to a convex
bounded polyhedral domain Π.

3. THE H2 PERFORMANCE INDEX

Let us start by defining the finite-horizon 2-norm
of a signal y(t) in the time interval [t0, T ] as

‖y‖2,[t0,T ] =




T∫
t0

y(t)′y(t) dt




1
2

(5)

In order to present some preliminary results, con-
sider the parameter-dependent system

ẋ(t) = A(θ)x(y) + B(θ)w(t), x(0−) = 0
y(t) = C(θ)x(t) (6)

where θ is a time-varying parameter vector such
that all the admissible (θ, θ̇) belong to a given
polytope Π, and A(θ), B(θ) and C(θ) are bounded
matrix functions of θ.

The following lemma, which is an extension of a
well known result to the context of parameter-
dependent systems, will be the basis for the H2

control design problems addressed in the next
sections.

Lemma 1. Consider the system (6) and let Π be a
given polytope of admissible (θ, θ̇). Suppose that
there exists a bounded symmetric positive definite
matrix P(θ) such that the following inequality is
satisfied for all (θ, θ̇) in Π:

−Ṗ(θ)+A(θ)P(θ)+P(θ)A(θ)′+B(θ)B(θ)′<0 (7)

Then the system is (6) exponentially stable for all
(θ, θ̇) ∈ Π, and for any T > 0

‖y‖2
2,[0+,T ] < sup

θ∈Π
Tr [C(θ)P(θ)C(θ)′] (8)

The proof of the above lemma follows from (Green
and Limebeer, 1995). Observe that V (x, θ) =
x′P−1(θ)x is a Lyapunov function for the unforced
system of (6).

4. MAIN RESULTS

In the sequel it is presented a condition in which
the matrix product A(θ)P(θ), which appears in
the Lemma 1, is replaced by A(θ)G(θ) where G(θ)
is a slack variable. The advantage of this over
parameterization will be clarified later on in the
design results.

Theorem 1. Consider the system (6). There exist
bounded matrices Ñ (θ) and P̃(θ) > 0 such that
the following conditions are satisfied

− ˙̃P(θ)+A(θ)P̃(θ)+P̃(θ)A(θ)′+B(θ)B(θ)<0 (9)

Ñ (θ) − C(θ)P̃(θ)C(θ)′ > 0 (10)

if and only if there exist bounded matrices
N (θ), P(θ)>0, G(θ) and S(θ) and a scalar α>0
such that the following LMIs are satisfied
[

H(θ)+αI A(θ)G(θ)
� α[S(θ) − G(θ) − G(θ)′]

]
< 0 (11)

[ S(θ) G(θ) − P(θ)
� I

]
> 0 (12)

[N (θ) C(θ)G(θ)
� G(θ) + G(θ)′ − P(θ)

]
> 0 (13)

where

H(θ)=−Ṗ(θ)+A(θ)G(θ)+G(θ)′A(θ)′+B(θ)B(θ)′



Moreover, under the above condition, V (x, θ) =
x′P−1(θ)x is a Lyapunov function for the un-
forced system of (6) and

‖y‖2
2,[0,T ] < Tr [N (θ)] (14)

Proof. Firstly, note that as for any matrices G(θ)
and S(θ) ≥ 0,

[S(θ) − G(θ)]′S−1(θ)[S(θ) − G(θ)] ≥ 0 (15)

it results that

G(θ)′S−1(θ)G(θ) ≥ G(θ) + G(θ)′ − S(θ) (16)

Further, by denoting

Ψ =
√

α I+
1√
α

[G(θ) − P(θ)]′A(θ)′ (17)

the inequality Ψ′Ψ ≥ 0 implies that for any α > 0
and for any matrices G(θ) and P(θ)

[G(θ)−P(θ)]′A(θ)′+ A(θ)[G(θ)−P(θ)] + αI

+ α−1A(θ)[G(θ)−P(θ)] [G(θ)−P(θ)]′A(θ)′≥0 (18)

To show the sufficiency, suppose that the LMIs
of (11)-(13) are satisfied. Then, we must have
S(θ) > 0 and G(θ) invertible. Applying Schur’s
complement to the inequality (12) and using (16)
one gets

[G(θ) − P(θ)] [G(θ) − P(θ)]′ < S(θ)

< G(θ)[G(θ) + G(θ)′ − S(θ)]−1G(θ)′ (19)

Considering the above inequality and applying
Schur’s complement to (11) it follows that

H+ αI+
A(θ)[G(θ)−P(θ)] [G(θ)−P(θ)]′A(θ)′

α
< 0

(20)
Subtracting the term A(θ)P(θ)+P(θ)A(θ)′ from
both sides of (20) leads to

−Ψ′Ψ > −Ṗ(θ) + A(θ)P(θ) + P(θ)A(θ)′

+B(θ)B(θ)′ (21)

and therefore (9) is satisfied with P̃(θ) = P(θ).
Further, since P(θ) > 0 it follows that the system
(6) is exponentially stable as V (x, θ) = x′P−1(θ)x
is a Lyapunov function for that system.

Next, it will be shown that the inequality (13) im-
plies (10) with P̃(θ)=P(θ) and Ñ (θ)=N (θ). The
result follows by applying Schur’s complement to
(13) and taking into consideration that

P(θ) < G(θ)[G(θ) + G(θ)′ − P(θ)]−1G(θ)′ (22)

Conversely, if (9) and (10) are satisfied, let us
choose the scalar α sufficiently large such that

α2[− ˙̃P(θ) + A(θ)P̃(θ) + P̃(θ)A(θ)′]

+B(θ)B(θ)′ + α[I + A(θ)P̃(θ)A(θ)′] < 0 (23)

Hence, it can be readily verified that the condi-
tions of (11)-(13) are satisfied with S(θ) = G(θ) =
P(θ) = α2P̃(θ) and N (θ) = α2Ñ (θ), which com-
pletes the proof. ∇∇∇
In order to present the control design result, let
the following notation. Given the system (1) and
matrices P, G, F, N and S to be determined later
on, define the matrices

Ψ1 =




αI 0 φ′
1 0

0 α(S−G−G′) φ′
1 0

φ1 φ1 BwB′
w−Ṗ −P

0 0 −P 0


 (24)

Ψ2 =
[

Θb 0 −Θa 0
−Θ̇b 0 Θ̇a Θa

]
(25)

Ψ3 =




N 0 0 0
0 G+G′ G′φ′

3 0
0 φ3G 0 0
0 0 0 −P


 (26)

Ψ4 =
[

Θd 0 −Θc 0
Θb 0 0 −Θa

]
(27)

Ψ5 =




S G 0 0
G′ I 0 0
0 0 0 −P
0 0 −P 0


 (28)

Ψ6 =
[

Θd 0 −Θc 0
0 Θb 0 −Θa

]
(29)

φ1 = AG + BuΘ′
uFCy (30)

φ3 = CzG + DzΘ′
uFCy (31)

where Θu is a given affine matrix function of θ
associated with the control law (4).

Theorem 2. Consider the system (1) and let Π
be a given polytope of admissible (θ, θ̇) and Θu

a given affine matrix function of θ associated with
the control law (4). Suppose that there exist fixed
matrices F, M, G, L2, L4 and L6, matrix functions
P, N and S which are affine in θ, and a scalar α>0
such that the following LMI problem is feasible at
all the vertices of Π:

Ψ1 + L2Ψ2 + Ψ′
2L

′
2 < 0 (32)

Ψ3 + L4Ψ4 + Ψ′
4L

′
4 > 0 (33)

Ψ5 + L6Ψ6 + Ψ′
6L

′
6 > 0 (34)

C1G = MC1 (35)

Then the control law

u(t) = K(θ)y(t) (36)
where

K(θ) = Θ′
uK, K = FM−1 (37)



ensures that the resulting closed-loop system is
exponentially stable for all (θ, θ̇) ∈ Π and for all
T > 0

‖z‖2
2,[0,T ] < Tr (N), ∀ (θ, θ̇) ∈ Π (38)

Moreover,

V (x, θ) = x′P−1(θ)x, P(θ) = Θ′
xPΘx (39)

is a Lyapunov function for the unforced closed-
loop system.

Proof. The closed-loop system of (1) with the
control law of (36) and (37) is given by

ẋ(t) = A(θ)x(t) + B(θ)w(t)
z(t) = C(θ)x(t) (40)

where

A(θ) = Θ′
xA + Θ′

xBuΘ′
uKCy

C(θ) = Θ′
zCz + Θ′

zDzΘ′
uKCy

B(θ) = Θ′
xBw

(41)

Note that (35), (37) and (24)-(31) imply that

A(θ)G = Θ′
xφ1, C(θ)G = Θ′

yφ3. (42)

The idea of the proof is to show that the con-
ditions (11)-(13) of Theorem 1 are satisfied with
A(θ),B(θ) and C(θ) as above and

P(θ) = Θ′
xPΘx, G(θ) = G

N (θ) = N, S(θ) = S
(43)

To show this, define the matrices

Ψ7 =




I 0
0 I

Θx 0
Θ̇x 0


 , Ψ8 =




I 0
0 I

Θz 0
0 Θx


 ,

(44)

Ψ9 =




I 0
0 I

Θx 0
0 Θx




It should be noted that

Ψ2Ψ7 = 0, Ψ4Ψ8 = 0, Ψ6Ψ9 = 0 . (45)

Further, observe that

Ṗ(θ) = Θ̇′
xPΘx + Θ′

xP Θ̇x + Θ′
xṖΘx (46)

Θ̇x = Θ−1
a Θ̇b − Θ−1

a Θ̇aΘ−1
a Θb (47)

In the light of (45), it results from (32)-(34) that

Ψ′
7Ψ1Ψ7 < 0, Ψ′

8Ψ3Ψ8 > 0, Ψ′
9Ψ5Ψ9 > 0 . (48)

Now, considering (41)-(44), (46), (47) and per-
forming straightforward matrix manipulations it
can be established that the inequalities of (48)
imply that the LMIs (11)-(13) are satisfied. The

proof is then completed by taking into account the
Theorem 1. ∇∇∇
The equality constraint (35) plays an important
role in static output feedback control problems
(Crusius and Trofino, 1999). Note that this con-
straint is trivially satisfied when state feedback is
used. Indeed, it turns out that for Cy = I, (35)
reduces to a simple change of variable M = G. In
the next section it will be shown how this equality
constraint can be used to handle decentralized
control problems.

It should be remarked that stability as well as
the H2 performance bound of (38) are based on
the parameter-dependent Lyapunov function (39)
which is rational in the system parameters. With
a proper choice of the structure of the matrix P in
the Lyapunov function and an appropriate choice
of the matrices Θa and Θb of the system descrip-
tion, the result of Theorem 2 can handle systems
with polynomial parameter-dependence as well as
polynomial-type Lyapunov functions, or even a
parameter-independent Lyapunov function, as in
the usual quadratic stability approach.

Finally, it is important to notice that (32) is not
convex with respect to the scalar α. From the
proof of the Theorem 1, it follows that for large
values of α the slack matrix G(θ) approaches the
matrix P(θ) of the Lyapunov function and thus
much of the degrees of freedom in G(θ) are likely
to be lost for too large values of α. On the other
hand, for small values of α the condition (32) will
fail to be satisfied. A gridding technique seems to
be an appropriate way for selecting the best value
of the scalar α.

5. DECENTRALIZED CONTROL

The Theorem 2 can be extended to handle struc-
tural constraints on the control gains that can be
expressed in the form

u(t) = K(θ)x(t) =
nc∑
i=1

RiKi(θ)Six(t) (49)

where Ri and Si are given matrices representing
the structure associated with the control gain
Ki(θ). This type of control law appears, for in-
stance, in decentralized control problems (Siljak,
1978). In this case the matrices Ri and Si are
used to specify that the i-th actuator is allowed
to receive information only from the i-th sensor.
The conditions of the Theorem 2 can be easily
adapted to the design of a control law of the type
(49). To this end, we just need to redefine φ1 and
φ3 of (30) and (31) as

φ1 = AG + Bu

nc∑
i=1

RiΘ′
ui

FiSi (50)



φ3 = C2G + Du

nc∑
i=1

RiΘ′
ui

FiSi (51)

and to replace the equality constraint (35) by the
following set of equality constraints

SiG = MiSi, i = 1, . . . , nc (52)

The H2 control law is now given by (49) with

Ki(θ) = Θ′
ui

FiM
−1
i , i = 1, . . . , nc (53)

The matrices Θui in the above control law have
the same role of the matrix Θu in the previous
Section 4.

6. CONCLUDING REMARKS

The contribution of this paper is twofold. It pro-
poses, for a class of continuous-time systems with
either rational or polynomial parameter depen-
dence, a H2 control design method in which the
matrix of the Lyapunov function is not among the
LMI decision variables that characterize the con-
troller. The advantages of this feature was empha-
sized in de Oliveira et al. (1999) in the context of
linear discrete-time system with affine parameter
dependence and for constant parameters. Another
important feature of the proposed method is that
it can be used to design static output feedback
controllers of the following three types, including
decentralized control laws: (i) robust control; (ii)
LPV control; and (iii) non-fragile control (robust
against a prescribed range of errors that can be
tolerated in the implementation of the designed
control gains). Moreover, stability and H2 perfor-
mance of the closed-loop system are based on a
rational parameter-dependent Lyapunov function.

The proposed design method is given in terms
of LMIs and can handle time-varying parame-
ters with admissible values and rates of variation
bounded by a given polytope. In contrast with its
discrete-time counterpart (Trofino et al., 2001),
the results of this paper are not globally convex
as the design conditions depend on a scaling factor
in a non-convex manner. To handle this difficulty,
a possible solution is to fix this scalar through a
gridding technique.
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