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Abstract: Disturbance attenuation for a class of nonlinear systems under unknown
disturbances is considered in this paper. Based on the Disturbance-Observer-Based
Control (DOBC) concept, two design schemes are proposed for external disturbances
generated by exogenous systems where the disturbances could be unbounded. One
design scheme is obtained by augmenting the estimation of the disturbance into a
state estimation and the other is to design a disturbance observer separately and
then integrate it with a controller. It is shown that under both schemes, disturbances
can be effectively rejected and global stability is guaranteed under certain conditions.
Simulations on a flight control system show the efficiency of the approach. Copyright
c©IFAC’2002
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1. INTRODUCTION

Analysis and synthesis of nonlinear control sys-
tems has been one of the most active research
areas in the past decades. A lot of elegant ap-
proaches have been presented and applied in prac-
tical engineering. Many of them focus on the dis-
turbance attenuation, for example, nonlinear out-
put regulation theory (Isidori and Byrnes, 1990),
stochastic nonlinear control theory (Basar and
Bernhard, 1995), nonlinear H∞ control (van der
Schaft, 1992). In many cases only the stability
of the nominal system without disturbances can
be guaranteed. It is noticed that stability can be

damaged in the presence of disturbances (Slotine
and Li, 1991).

Some classical control approaches provide simple
design methods to deal with disturbance but lack
of sound theoretical justifications. Others are es-
tablished on rigorous mathematical basis but are
only suitable for nonlinear system with specific
structures or have too large computation burden
to use in practical engineering. For example, Par-
tial Differential Equations (PDE’s) have to be
solved in the above mentioned methods.

DOBC appeared in the late of 80’s and has
found its application in many areas such as
robot manipulators (Nakao et al., 1987; Li and
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Van Den Bosch, 1993; Chan, 1995; Kim et al.,
1996; Oh and Chung, 1999). However, only lin-
ear DOBC was concerned although these plants
possess strong nonlinearity. That is, instead of
designing a nonlinear control law to compensate
for the nonlinearities in the dynamic systems, the
nonlinearities are treated as a part of disturbances
added on a linear plant. Obviously, for a non-
linear system, a nonlinear DOBC can improve
the performance and robustness greatly against
noises and unmodelled dynamics (Oh and Chung,
1999; Chen et al., 2000). New nonlinear DOBC
schemes have been proposed for robots with con-
stant disturbance or for systems with harmonic
disturbances(Chen et al., 2000; Chen, 2001).

This paper addresses disturbance observer based
control (DOBC) approach to disturbance atten-
uation for a class of nonlinear systems. After re-
formulating the DOBC design problem, two LMI-
based schemes are proposed. Several restrictions
on the existing nonlinear DOBC results are re-
laxed. Simulations on a flight control system show
the efficiency of the approach.

2. PROBLEM STATEMENT

Consider a nonlinear dynamic system with un-
known disturbances




ẋ(t) = A0x(t) + F01f01(x, t)
+B0 [u(t) + d(t)]

y(t) = C0x(t) + F02f02(x, t) + D0d(t)
,(1)

where x ∈ Rn, d ∈ Rm1 , u ∈ Rm2 and y ∈ Rp1 are
the state, the unknown disturbance, the control
input and the measurement output, respectively.
Similar to the regulation theory, it is supposed
that the unknown external disturbance d is gen-
erated by an exogenous system described by

{ .
w (t) = Ww(t)
d(t) = V w(t) . (2)

Many kinds of disturbances in engineering can be
described by this model, for example, unknown
constant and harmonics with unknown phase and
magnitude. It should be noticed that most exist-
ing results in differential geometry and Lyapunov
theory are restricted to bounded exogenous sig-
nals,.i.e, exogenous systems being neutral stable
(Isidori and Byrnes, 1990; Zheng et al., 2000).
There is no such an assumption for DOBC.

Assumption 1. The mappings f0i(x, t) (i = 1, 2)
are smooth nonlinear functions satisfying f0i(0, t) =

0, ‖f0i(x1, t)− f0i(x2, t)‖ ≤ ‖Ui(x1 − x2)‖ , for
i = 1, 2 and t ≥ 0 where Ui are given constant
weighting matrices.

A variety of nonlinear systems can be described
by the model (1) satisfying Assumption 1. A
system with weak nonlinearity, certainly, can be
represented by this model. For a system with
strong nonlinearity, after a nonlinear control tech-
nique like feedback linearization, dynamic inver-
sion control and gain scheduling technique is ap-
plied, the majority of the nonlinearity has been
cancelled and the resulting system can be de-
scribed by this model. In the meantime, some
nonlinear systems can be transferred into this
form through equivalent transformations. Actu-
ally, the research on this model was mainly moti-
vated from our work on applying disturbance ob-
server based control on robotics where a nonlinear
disturbance is integrated with Computed Torque
Control (Chen et al., 2000; Chen, 2000). The
Computed Torque Control is designed to linearize
a manipulator. However, due to the variation of
the tip mass (load) of the manipulator, only the
majority of the nonlinearity in dynamics is can-
celled by Computed Torque Control. The remain-
ing nonlinearity satisfies the bounded condition in
Assumption (1). Therefore the manipulator under
this control law can be well described by system
(1) with Assumption 1.

The problem to be considered in the DOBC
theory is to design an observer for the nonlinear
system (1) to estimate the unknown disturbance
d and then design a proper controller to reject the
disturbance using its estimation. Two approaches
to this problem will be developed in Section 3 and
4, respectively.

3. DOBC USING FULL-ORDER OBSERVERS

By augmenting the system’s state equations (1)
with the disturbance dynamics equations (2), the
composite system is given by

{ .
z (t) = Az(t) + F1f1(z, t) + Bu
y(t) = Cz(t) + F2f2(z, t) (3)

where

z(t) :=
[

x(t)
w(t)

]
, A :=

[
A0 B0V
0 W

]
,

F1 :=
[

F01

0

]
, f1(z, t) = f01(x, t)



F2 = F02, f2(z, t) = f02(x, t)

B :=
[

B0

0

]
, C :=

[
C0 D0V

]

To make the control problem well posed, the
following assumption is also necessary.

Assumption 2. (A, C) and (W,B0V ) is observ-
able.

Its full-order observer is designed as




.

ẑ (t) = Aẑ(t) + F1f1(ẑ, t) + Bu+
+L(ŷ − y)

ŷ(t) = Cẑ(t) + F2f2(ẑ, t)
(4)

where

ẑ(t) :=
[

x̂(t)
ŵ(t)

]
, L :=

[
L1

L2

]

f1(ẑ, t) = f01(x̂, t), f2(ẑ, t) = f02(x̂, t)

and L is the observer gain to be determined.

The estimation error

e := z − ẑ :=
[

ex

ew

]
:=

[
(x− x̂)
(w − ŵ)

]
(5)

is governed by

.
e = (A− LC)e + F1[f1(z, t)− f1(ẑ, t)]

+LF2[f2(z, t)− f2(ẑ, t)]. (6)

In the DOBC scheme, the control consists of
two parts: one is to compensate for the distur-
bance d and the other is to stabilize the system
and achieve performance specification. It is deter-
mined by

u = −d̂ + Kx̂ (7)

where the disturbance estimation is given by

d̂ = V ŵ =
[
0 V

]
ẑ, (8)

and K is the control gain to be determined.

Combining the estimation error equation (6) with
the plant (1) yields

[ .
x
.
e

]
=

[
A0 + B0K B

0 A− LC

] [
x
e

]

+
[

F01 0 0
0 F1 LF2

] 


f1(z, t)
f1(z, t)− f1(ẑ, t)
f2(z, t)− f2(ẑ, t)


(9)

where

B :=
[−B0K B0V

]
. (10)

It is noted that∥∥∥∥∥∥




f1(z, t)
f1(z, t)− f1(ẑ, t)
f2(z, t)− f2(ẑ, t)




∥∥∥∥∥∥
6

∥∥∥∥∥∥




U1 0 0
0 U1 0
0 U2 0







x
ex

ew




∥∥∥∥∥∥
.

Our objective now is to find L and K such that
system (9) is exponentially stable.

For shortening description, we denote

F 1 :=
[
P2F1 R2F2

]
,

U1 :=
[
U1 0

]
, U2 :=

[
U2 0

]

sym(M) := M + MT .

Theorem 1. Consider the system (1) under the
exogenous disturbance (2) satisfying Assumption
1 and 2. If there exist λ1 > 0, Q1 > 0 and R1

satisfying



sym(A0Q1 + B0R1)
+λ2

1F01F
T
01

1
λ1

Q1U
T
1

1
λ1

U1Q1 −I


 < 0, (11)

and λ2 > 0, P2 > 0 and R2 satisfying



sym(P2A−R2C) +
1
λ2

2

U
T

1 U1

+
1
λ2

2

U
T

2 U2

λ2F 1

λ2F
T

1 −I




< 0,(12)

then the closed-loop system (9) under the DOBC
consisting of the control law (7) with gain K =
R1Q

−1
1 and the observer (4) with gain L = P−1

2 R2

is exponential stable.

Proof: Let

V1(x, t) = xT Q−1
1 x +

1
λ2

1

t∫

0

[
‖U1x‖2 − ‖f1(x, τ)‖2

]
dτ,

V2(e, t) = eT P2e

+
1
λ2

2

t∫

0

[
‖U1ex‖2 − ‖f1(z, τ)− f1(ẑ, τ)‖2

]
dτ

+
1
λ2

2

t∫

0

[
‖U2ex‖2 − ‖f2(z, τ)− f2(ẑ, τ)‖2

]
dτ.



Along with the trajectories of (9), firstly we have

.

V 2 (e, t) = eT (P2(A− L2C) + (A− L2C)T P2)e

+2eT P2 [F1(f1(z, t)− f1(ẑ, t))

+LF2(f2(z, t)− f2(ẑ, t)))]

+
1
λ2

2

[
‖U1ex‖2 − ‖f1(z, t)− f1(ẑ, t)‖2

]

+
1
λ2

2

[
‖U2ex‖2 − ‖f2(z, t)− f2(ẑ, t)‖2

]

≤ 2eT
[
P2(A− L2C) + (A− L2C)T P2

+λ2
2P2F1F

T
1 P2 + λ2

2P2LF2F
T
2 LT P2

+
1
λ2

2

U
T

1 U1 +
1
λ2

2

U
T

2 U2)e

≤−η1 ‖e‖2

which can be guaranteed by (12) using Schur
complement, where η1 > 0 is a proper constant.

Similarly, for (9) in the absence of the presence of
e, based on (11) we can find a proper constant η2

such that (P1 = Q−1
1 )

.

V 1 (x, t)≤ xT
[
P1(A0 + B0K) + (A0 + B0K)T P1

+λ2
1P1F01F

T
01P1 +

1
λ2

1

UT
1 U1

]
x

≤−η2 ‖x‖2 ,

which also means the pure stabilization problem
for (1) without disturbances d is solvable. If (12)
and (11) hold, then there exists η3 > 0 involved
in P1 and B such that

2xT P1Be ≤ η3 ‖x‖ ‖e‖ .

Denote a Lyapunov function candidate for (9) as

V (x, e, t) = V1(x, t) + η0V2(e, t),

where

η0 =
η2
3

4η1η2
.

Thus, along the closed-loop system (9), we have

.

V (x, e, t)≤−η0η1 ‖e‖2 − η2 ‖x‖2 + 2xT P1Be.

≤−η0η1 ‖e‖2 − η2 ‖x‖2 + η3 ‖x‖ ‖e‖
=−(

√
η2 ‖x‖+

η3

2
√

η2
‖e‖)2

≤−min{√η2,
η3

2
√

η2
}

∥∥∥∥
[

x
e

]∥∥∥∥
2

.

Correspondingly the closed-loop system is asymp-
totically stable. Q.E.D

Remark 1. The observer and DOBC design which
can reduces to LMI’s can be shown as follows
separately: (i) the observer gain L can be obtained
via (12) together with P2 and R2. (ii) solve (11)
to obtain Q1, R1 and K. Finally we can construct
the control law as (7).

4. DISTURBANCE OBSERVERS

One of the features of the DOBC approach is
the flexibility in the design of the disturbance
observer, which can be used to enhance the dis-
turbance attenuation ability of existing nonlinear
or linear controllers that cannot deal with distur-
bance directly. In many cases, one may prefer to
designing a disturbance observer separately from
the controller design. When all states for a system
are available like position and velocity in manip-
ulators, it is unnecessary to estimate them. In the
following, it is assumed that only the estimation
of the disturbance is concerned and all the states
are available.

In this section the disturbance observer is pro-
posed as

d̂ = V ŵ, ŵ = v − Lx

where v is the auxiliary variable satisfying

.
v = (W + LB0V )(v − Lx) (13)

−L(−A0x−B0u− F01f01(x, t)).

Comparing system dynamics (1) and the distur-
bance (2) with the observer (13) yields

.
ew= (W + LB0V )ew (14)

where ew is defined as in (5).

When the DOBC law u = −d̂+Kx is applied, the
composite system under the disturbance observer
(13) and the DOBC is given by

[ .
x
.

ew

]
=

[
A0 + B0K B0V

0 W + LB0V

] [
x
ew

]

+
[

F01

0

]
f01(x, t) (15)

It is obviously that the observer error dynamics
is separated from the controller design.



Theorem 2. Consider the DOBC of the system
(1) under disturbance (2). Suppose that there
exist λ > 0, Q1 > 0, P2 > 0, R1 and R2 satisfying




sym(A0Q1 + B0R1)
+λ2F01F

T
01

1
λ

Q1U
T
1

1
λ

U1Q1 −I


 < 0, (16)

and

sym(P2W + R2B0V ) < 0, (17)

the closed-loop system (15) under the DOBC with
gain K = R1Q

−1
1 and the disturbance observer

(4) with gain L = P−1
2 R2 is exponentially stable.

Proof is omitted for brevity.

Remark 2. One of the features of the DOBC for
linear systems is that the design of the distur-
bance observer is separated from the controller
design. The approach discussed in this paper ex-
tends this feature from linear systems to a class
of nonlinear systems.

5. AN EXAMPLE

The longitudinal dynamics of A4D at a flight
condition of 15,000 ft altitude and 0.9 Mach can
be given by (see (Petersen and Hollot, 1986) and
(McRuer et al., 1976, P259))

ẋ(t) = A0x(t) + f(x, t) + B0 [u(t) + d(t)]

where x1 is the forward velocity (ft s−1), x2 is the
angle of attack (rad), x3 is the pitching velocity
(rad s−1), x4 is the pitching angle (rad), u is
elevator deflection (deg) and

A0 =




−0.0605 32.37 0 32.2
−0.00014 −1.475 1 0
−0.0111 −34.72 −2.793 0

0 0 1 0




BT
0 =

[
0 −0.1064 −33.8 0

]
.

The eigenvalues of A0 are −2.1250 ± j5.8510
and −0.0039 ± 0.0896, which means the nominal
system without nonlinearity is close to instability.

Since there may be a large degree of uncertainty
in the (3, 2) entry of A0, similar to Petersen and
Hollot (1986), we suppose that

f(x, t) = F01f0(x, t),
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Fig. 1. Response of the states under disturbances
using robust control

where

f0(x, t) =
[
0 sin(10πt)x2 0 0

]T
,

F01 =




0 0 0 0
0 0 0 0
0 50 0 0
0 0 0 0


 , U1 =




0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0


 .

and ‖f0(x, t)‖ ≤ ‖U1x‖ .

d(t) is assumed to be an unknown harmonic
disturbance described by (2) with

W =
[

0 5
−5 0

]
, V =

[
25 0

]
.

If the full states can be measured and apply the
approach in Section 4, we can get

K =
[
2.3165 9.9455 4.0004 13.8525

]
,

L =
[

0 0.1255 0.0008 0
0 0.6470 −0.0019 0

]
,

and the controller is u = −d̂ + Kx.

Suppose that the initiate value

x(0) =
[
0.2 −0.2 0.3 −0.2

]

is taken. The robust control law obtained in
(Petersen and Hollot, 1986) is firstly applied. Fig-
ure 1 shows that quite poor performance is yielded
although the closed-loop system remains stable.
Figure 2 shows that satisfactory performance and
stability under the disturbance and unmodelled
nonlinearity are achieved by the DOBC scheme
developed in this paper.
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Fig. 2. Response of the states under disturbances
using DOBC control

6. CONCLUSION

New Disturbance-Observer-Based (DOB) control
approaches are presented for a class of nonlinear
systems with possibly unbounded disturbances.
Two disturbance observer design methods are
provided which also have potential significances
in some other areas like noise control. LMI-based
design procedures are proposed. Based on the
estimation of disturbances, the composited con-
trol law can guarantee the closed-loop systems
globally stable at the presence of disturbances.
Compared with other existing control methods
for nonlinear systems with unknown disturbances,
the DOBC approach has several advantages:

• No PDEs or PDIs has to be solved for
controller design;

• Some restrictions on the existing nonlinear
DOBC results are removed;

• Unknown disturbances are not necessary to
be bounded;

• Global stability rather than local one might
be achieved;

• Design procedure is relatively simple and
easy to accept by engineers.
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