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Abstract: This paper is concerned with the supervisory target control problem
for hybrid systems modeled by hybrid automata. The problem is studied in a
straigh tforvard manner through reachability analysis. A switching controller is
proposed such that all the trajectories of the con trolled automaton, that initiate
from a given initial set in the state space, reach a target set. A tthe same time a
cost function, specified by weigh ting the discrete-eent transitions of the automaton,
is minimized. Emphasis is given to the control synthesis under event uncertainty
modeled by uncontrollable transitions. Copyright © 2002 IFA C
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1. INTRODUCTION

Hybrid dynamic systems arise when time-driven
dynamics interacts with events. Suc hin teraction
is typical in complex systems that consist of a
number of interconnected subsystems or operation
modes. In a supervisory control framework transi-
tions betw een modes are ordered ly the controller
(supervisor). In each mode the controller observes
the continuous state of the system and detects
certain events. After an event has been detected,
the controller switc hesthe system to the next
mode. Our aim is to set the conditions that, when
satisfied, the appropriate event is detected. Then
the controller, utilizing this information, orders
the switching such that the overall behavior of the
system meets the specification.

Efficient modeling of hybrid systems requires a
blending of con tinuousdynamics models (differ-
en tial or difference equations) with discrete even t
models (automata, P etri-netsetc.). In this w ork
hybrid systems are modeled by hybrid automata
and the target control problem is cast as follows:
Given a hybrid automaton, an initial and a target
set in the hybrid state space, do therwe exist switch-

ing conditions that “transfer” the system from
the initial to the target set, while a performance
criterion is minimized?

In the hybrid systems communit y the target con-
trol problem has always been considered as the
dual of the “safety” synthesis problem: Given a set
of forbidden states F', do ther e exist switching on-
ditions that ensure that the system never r eaches
F? Although a great amount of researc hw ork
has been published on synthesizing controllers
for safety specifications, w ehighlight the w orks
of (Asarin et al., 2000; Tomlin et al., 1999; Wong-
Toi, 1997), this is not the case for the target
control problem which has attracted considerably
little atten tion. Hov ever, the target cotrol prob-
lem has its own unique features and the synthe-
sis procedure cannot be seen simply as the dual
of safety. The main result of this study is the
algorithm that derives the switc hingconditions
needed to drive the system from the initial to the
target set at a minimum discrete transition cost.
Also, emphasis is given to the control synthesis
under uncontrollable transitions, which is an issue
that previous works (e.g Asarin et al., 2001; Tit-
tus and Egardt, 1998; T ronis and Spathopou-



los, 2001a; Trontis and Spathopoulos, 2001b) ei-
ther do not cover or fail to present clearly.

The paper is organized as follows: Section 2 intro-
duces the modelling framework and the control
objective. Section 3 is concerned with the solu-
tion for hybrid automata with no uncontrollable
transitions. Control synthesis for hybrid automata
with uncontrollable transitions is studied in sec-
tion 4. Finally, conclusions and directions for fur-
ther research are given in section 5.

2. PROBLEM FORMULATION
2.1 Hybrid automata

The hybrid automaton is the basic entity of our
analysis.

Definition 1. A hybrid automaton is a tuple
A=(X,Q,INV £, T, c,G) where:

e X C R"” is the continuous state space defin-
ing the continuous part of the plant state
space.

e () is the finite set of discrete control locations
or control modes. The pair ) X X defines the
hybrid state space of the system.

e The function INV : Q — 2% assign to
each control location ¢ € () an invariant
INV(q) C X.

o f:(Q x X — X is a vector field that assigns
to each control location the dynamics of the
continuous part of the plant.

o I'=T,UT,. C Q x (@ is the set of discrete
transitions between control locations. T, is
the set of controllable transitions while T3, is
the set of uncontrollable transitions.

ec: T — R' is a transition cost function
that assigns a positive real number to each
transition.

e G :T — 2% assigns to (¢,¢') € T a guard set
G(q,q') such that G(q,¢') NINV (q) # 0.

All the sets involved in the above definition are
considered closed and compact. Without loss of
generality it is assumed that there are no discon-
tinuities in the state x of the system during tran-
sitions. The set INV(q) is the subset of the con-
tinuous state space in which the continuous state
must be contained as long as the system resides
in location ¢g. The vector field f is assumed to be
globally Lipschitz in X. The guard set G(q,¢’) is
the subset of the state space where the system can
switch from location ¢ to ¢'. A transition can take
place as long as the corresponding guard condition
is satisfied. In the case of controllable transitions
the moment that the transition takes place is a
design variable. An external system (controller)
orders the transition when a certain condition,
subject to design, is satisfied. If there is no con-
troller imposed on the automaton the transition

can take place anytime while x € G(q,¢'). In the
case of uncontrollable transitions, the switching
between two locations ¢ and ¢’ can occur anytime
the guard G(q,q’) is satisfied and there is no
control over them. An uncontrollable transition
is forced when the continuous state exits the cor-
responding guard. That is, unlike the model of
(Dang, 2000; Wong-Toi, 1997), the system will
definitely take the uncontrollable transition if the
state enters its guard. Finally, both controllable
and uncontrollable transitions are forced when
the continuous state, while it satisfies the guard
condition, reaches the boundary of the invariant.

Definition 2. A hybrid time trajectory 7 is
defined as a finite or infinite sequence of intervals
of the non-negative real line, 7 = {I;}, i € N\ {0},
which satisfy the following properties:

e [; is closed unless 7 is a finite sequence and
I; is the last interval, in which case it is left
closed but can be right open.

e Let I; = [r;,7/]. Then for all i: 7, < 7/ and

y . o —
fori> 1l =1_4.

The set of all hybrid time trajectories is denoted
by T. A trajectory of a hybrid automaton is
defined as follows:

Definition 3. A trajectory of a hybrid au-
tomaton A, initiating from a state (go,%o) € @ X
X is a collection (7,¢,x) with 7 € T, q: 7 — Q
and x : 7 — X which satisfies:

e Initial condition: (go,x0) = (q(m1),x(71)),
X(Tl) S INV(qo)

e Discrete transition: for all i there exists a 7,
and a ¢' with (¢,¢') € T such that ¢(7}) = ¢
and x(7]) € G(q,¢'). If t. = sup{t|x(t) €
G(q,q')} then ¢(mi11) = ¢', Tiy1 <t

e Continuous transition: for all t € [r,7]):
q(t) = ¢ € Q@ and x(t) = £,(x(1)), x(t) €
INV (q).

The set of hybrid trajectories initiating from (g¢, x)
is denoted by L (A, (q,x)), where L(A) denotes
the set of all hybrid trajectories generated by A.
L(A) is called the language of A. From the above
definition it is inferred that there is more than one
possible trajectory initiating from (qo,xo). How-
ever, uniqueness of solutions is not a prerequisite
for the control synthesis problem.

Nonetheless, some abnormalities may occur un-
der these definitions. For instance, a trajectory
¢ € L(A) may reach the boundary of INV(q)
without entering any guard set G(q,q'). Such
trajectory becomes blocked and the automaton
is called blocking. Furthermore, a trajectory can
switch infinitely often between discrete locations
in finite time. This phenomenon may occur when
there exists a sequence of discrete states ¢1, ..., ¢s
such that G(q1,¢2) NG (g2,93) N - NG(gs, q1) # 0.
For more details see (Asarin et al., 2000). An



automaton that accepts this trajectory is called
Zeno. These issues must be taken into consid-
eration during the control design process. Omne
requires a controller that prevents blocking and
does not allow finitely many transitions in finite
time.

2.2 Control scheme and specification

Given the plant modeled by a hybrid automaton
and a specification for the desired behavior, the
objective is to derive a controller that guarantees
the evolution of the system dynamics according
to the specification. Assuming full observability
of the hybrid state, the controller is considered to
be a map:

C : L(A, (q0,%0)) — 2% (1)

The controller evaluates the current state against
pre-specified conditions and makes the decision
over ordering a transition or not. These conditions
are expressed through the control sequence l; =
(7, G¥ (74, mig1)). ™ denotes a sequence (path)
of control locations ¢ € ), while G} is the
corresponding sequence of control guards. The
control guards G} (-,-) C G(.,-) are the design
parameters of the controller. Having loaded the
sequernce [; in the controller’s memory, the control
strategy is applied according to the scheme:

(0.} if x € G7(q,¢')A
7 (q,d") €T
if x(t, ) € G7(q,q")A

C x(t) ¢ Gilg.d)n

C(&(qo,x0)) = § 1 (2)

(¢,4") € T

) iX€Gi@d)n
(¢,4) €Ty

q otherwise

with ¢ = m and ¢’ = m41. Clearly, the pro-
posed controller is non-deterministic. If the first
condition is satisfied, the controller can imme-
diately order the transition to the next location
¢ on 7 or “idle” for some time and order it
later. In either case the idling period stops when
the second condition is satisfied. The controller
must order the transition just before the expres-
sion x € G7(q,¢') becomes false at time t, =
sup{t|x(t) € Gf(g,q')}. The idling period reflects
design margins and is directly connected to the
fact that the guard conditions G(q¢,¢') are in gen-
eral full dimensional sets rather than switching
hyper-surfaces. In our framework no restrictions
over the duration of idling are considered. Natu-
rally, when the continuous state satisfies the guard
condition G} (g, ¢') of an uncontrollable transition
(¢,q") € Ty the controller can take no action.
Last but not least, there may be the case where
x € G(g,q") with ¢ = m; and ¢ # m;41. In this
case the controller prevents the transition (g, ¢")

since ¢" # m;y1. If this transition is uncontrol-
lable, then the design must guarantee that the
guard G(q,q") is not reachable. In other words,
the control scheme (2) restricts the evolution of
the system along a single path 7.

Let us now consider a hybrid automaton A, an
initial set I = (qo, Xo), a target set ' = (qp, Xp)
and the path @ = ¢o,...,qr. The cost of 7 is
defined as :

J(m) = c(mi,mis) (3)
i=1

with M € N. This function represents the
transition cost along = from an initial state
(¢(mi),x(m)) € I to a final (q(ty),x(ty)) €
F, with t; > 7a41. Note that by applying
the control scheme (2) all the trajectories £ €
L(A,(q(m1),x(m1))) evolve exclusively on 7 and
therefore the cost function (3) is well defined even
when uncontrollable transitions are considered.
Finally, the target control problem is cast as fol-
lows:

Given a hybrid automaton A, an initial set I =
(g0, Xo) and a target set F' = (qp,Xp), design
the control sequence l; such that all trajectories
initiating from I reach F with the least overall
transition cost.

From the previous, two early conclusions are de-
rived. First, if there exists a solution to the tar-
get control problem, then all the trajectories of
the closed system are non-Zeno. Indeed, since
we require the number of switches M € N, a
solution that involves infinite number of switches
does not satisfy the specification. Second, given
that there exists a solution, all trajectories of the
closed system initiating from I and reaching F
are non-blocking, under the assumption that their
behavior is not considered after they have reached
the target set.

3. CONTROL SYNTHESIS WITH NO
UNCONTROLLABLE TRANSITIONS

As it was shown in the previous section, the
solution to the synthesis problem is the control
sequence [;. To obtain [;, backward reachability
analysis is applied on separate paths m between
the initial and the target location ¢y and ¢r, in
ascending order of cost. Starting from the target
set F', one asks to compute the set of states W
from which F is reachable by the evolution of the
continuous and discrete dynamics along 7. This
computation is iterated untill the initial location
qo is reached. Using the information provided by
the reachability analysis, one derives the solu-
tion, if any, to the synthesis problem. To perform
reachability analysis, the following operators are
employed:



Definition 4. Given a hybrid automaton A and
aset Y C 29%X the continuous predecessor
operator pre, : 29%X — 29xX ig defined as:

pre.(Y) ={(¢,x) | 3t € R" :
x':X+/0 £,(r)dr A (¢, x'(8) €YA  (4)
x'(r) e INV(q)VT €[0,t]}

Definition 5. Given a hybrid automaton A, a
set Y C 29%X and a path 7 = qo, -, qr, the
discrete predecessor operator preg : 29%% x
N — 29%X is defined as:

preg(Y) ={(¢,;x) | 3¢ € @ : (¢',x) € YA 5)
¢ =miANg=mi_ 1 Ax€INV(g)NG(q,¢)}
Intuitively, the continuous predecessor operator
defines all the states that can reach a set Y by
the evolution of the continuous dynamics only.
Similarly, the discrete predecessor operator de-
fines all the states that can reach a set Y by a
discrete transition from the previous location ¢ to
the current location ¢’ on . With these definitions
in place, the solution to the target control problem
is obtained from algorithm 1.

Algorithm 1: Target control synthesis with no
uncontrollable transitions

{mt, .- 7EY .= K _shortest_paths(A)
repeat j =1,2,...
m? = length(n?)
W_;i = pre.(F)
fO:Ji =m/ — 1 downto 1
Wﬂ] = prec(preitt (W s )

Tit1

%Wj:qof" yqF

end

Fi=W_nI, I[:=I\I
until 7 = ) or j=K
if I = () then 3 feasible solution
I := (g0, Xo)

The algorithm begins with ranking the K shortest
paths from the initial location gy to the target
location gp in ascending order of cost. For that
reason it utilizes a generalization of Dijkstra’s
shortest path algorithm on weighted graphs (e.g.
Martins et al., 2000; Martins et al., 1998). Then
it performs backward reachability analysis along
the first identified path ' from the Dijkstra’s
algorithm. Namely, it computes the set of states
W1 along m', from which the target set F is
reachable. When the initial location gq is reached,
it generates the set I' := W,1 N I. This set
represents all the states (¢o,xo) € I that can reach
F following the optimal path 7'. If I\ I* # ) then
the states (¢o, Xo) € I\I* either need another path
to reach F or, in the worst case, cannot reach F' at
all. In this case the same procedure is repeated on
the next identified path 72, considering initial set

I'. The algorithm terminates when either there
are no more initial states, for which a path has
not been found (I = (), or the K" path has been
tested (j = K). After the termination, the initial
set is re-assigned the original value I = (go, Xo).

From a theoretical point of view, if the algorithm
terminates on the second condition (j = K) it
cannot be claimed that there is no feasible solution
to the problem, unless the maximum number of
paths in the automaton equals K. There may
be the case where a feasible path with rank
greater than K does exist but the K-shortest-
paths algorithm fails to identify. This indicates
that the target control problem is semi-decidable,
i.e. if the problem is feasible algorithm 1 may
provide the solution. If not then in general it gives
Nno answer.

Proposition 1. If algorithm 1 terminates on the
first condition then the target control problem is
feasible and the control sequence for (qo,x%o) €
I C 1= (q,Xp) is defined as:

6 = (x Gy (xl,7]1) (©)

with G:(ﬂg7ﬂg+1) = pron(Wﬂg) n G(”fv”gﬂ)v
while for the transition cost it holds:
J*(r?) = Z c(ﬂf77rg+1) (7)
i=1
The operator projx (-) projects a set of the hybrid
state space () X X to the continuous state space X .
The proof of the proposition is straightforward.
Note that in general the control sequence I; is
not unique for all (gp,x0) € I. Indeed, during
the execution of the algorithm the initial set [
is split up into the disjoint sets I7. States that
belong to different I’s follow different paths to
the target. As a result, the control sequence that
must be loaded to the controller depends on the
initial state (qo,%o) € I.

4. CONTROL SYNTHESIS WITH
UNCONTROLLABLE TRANSITIONS

When uncontrollable transitions are introduced
into the model the control design needs to be
modified. The reason behind is that the controller
has no control over them. It is the system itself
or the environment that decide when to make
a transition and to which location, no matter if
the system is driven off target or gets blocked.
In order to prevent these undesirable situations,
the existence of uncontrollable transitions has to
be taken into account through the controllable
transitions of the automaton.

More specifically, let us apply algorithm 1 to an
automaton A with uncontrollable transitions to
obtain the control sequence {; = (7, G} (74, Tit1)).
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Fig. 1. Blocking induced by the uncontrollable
transition (¢, q")

Also let us assume that the path 7 contains an
uncontrollable transition (¢,q') with ¢ = m; and
q¢" = mi+1. Necessary condition for the transition
(¢,q") to drive the system to the target is to occur
when x € G}(g,¢'). Recall now that for every con-
trol guard G} (-,-) it holds G} (-,-) C G(,-). This
inclusion implies that for the continuous state, as
it evolves along m, it may hold x € G(¢,q') \
G?(q,q'). Given that the transition (g¢,¢’) is un-
controllable, it may occur anytime the state lies
in G(q,q¢"). So it may happen at x ¢ GI(¢,¢).
Consequently, the system never reaches F' and
probably, as shown in figure 1, it gets blocked.

Uncontrollable transitions that are not contained
in 7 can cause undesired behaviors as well. Let us
counsider the uncontrollable transition (g, ¢") with
g € mand ¢" ¢ m. As it is shown in figure 2,
the continuous state, as it evolves towards the
control guard G} (¢, q"), may reach first the guard
G(q,q"). But since (g,¢"") is uncontrollable, it
cannot be prevented and as a result the system
is driven again off target.

It is clear that there exist certain states which
must not be reached at any time during the
evolution along a path 7 towards the target set
F'. Let us denote this set of states in each control
location m; by F,,. From the previous, states
(q,x) € Fy, drive the system off target and may
cause blocking. Therefore the set of forbidden
states is defined as Fy, = ng” U R‘T’ff where:

For = {(q,G(q,q)) \ preiT (Wy) |
(0.4) €TuNg=mi N¢' =mit1}

(8)

and
FoIT = {(q,G(q.q")) |
(0,4") € TuNg=mi Nq" # i1}

The sets Fﬁ:‘ contain the forbidden states related
to uncontrollable transitions on the current path
7, while F2/7 represent the forbidden states re-
lated to uncontrollable transitions that lead out
of the path. Having defined the set F = |J, F&r,,
the next step is to compute the set W, C W,
from which all the trajectories reach the target F
avoiding at the same time £;. This can be seen as
a safety synthesis problem along 7 considering Fi
as the set of forbidden states. The computation
of W requires the definition of the reach-avoid
operator:

9)

Definition 6. Given a hybrid automaton A and the
sets Y, Z C 29%X the reach-avoid operator
reach : 29%X x 2@xX _ 2@xX ig defined as:

reach(Y,Z) = {(¢,x) | 3t € R" :
X' =x+ /t £,(r)dr A (¢, x'(t)) e YA (10)

x'(r) € INV(q)\ ZVT € ]0,t]}

The reach-avoid operator defines all the states
that can reach a set Y by the evolution of the
continuous dynamics only, avoiding a forbidden
states set Z. Incorporating this safety synthesis
procedure in algorithm 1, one obtains algorithm
2 for target control synthesis with uncontrollable
transitions.

Algorithm 2: Target control synthesis with uncon-
trollable transitions

{mt, .-+ 78} = K _shortest_paths(A)
repeat j =1,2,...
m = length(t?) %7l =qo, - ,qr
W!; =reach(F, F’:ff)
for i = m?' -1 downto 1
if (7], 7l,,) €T,
W', = reach(preit' (W', ), FeiTy
i Tl
else
W', = prec(prei™ (W', )\
; 7 T
prec(Fop U F2I7)
end
end
I = W;H- NI,
until T = 0 or j=K
if I = () then 3 feasible solution
I:= (QO7X0)

I:=I\I

Like algorithm 1, algorithm 2 starts by rank-
ing out the K shortest paths from the initial to
the target location. Then it performs reachability
analysis along the first identified path 7!. The
safety synthesis procedure takes place at each
location of 7! seperately. The algorithm has to
check if the transition from the current location
g = w} to the next location ¢’ = 7, is con-
trollable or not. This information is vital for the
computation of the safe set W',. The reason be-
hind is that the controller can take no forcing
or preventing action on uncontrollable transitions.
Therefore the computation of the safe set in the
involved locations needs to be more conservative.
Hence, if the transition (n},7},,) is controllable,
the safe set W/, is computed directly using the
reach—avoid opérator with respect to the set of
forbidden states F‘;’f ! that can drive the system

out of the path. In the case that (mj,m},,) is
uncontrollable, the algorithm computes all the
states that reach the local target set preq(W', )

i+1
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Fig. 2. The system is driven out of the path due
to the uncontrollable transition (g, ¢")

and then from thi§ set itiremoves all the states
that reach either F;{’ or F;lff to obtain the safe

set W7’T1. After the safe set W, along 7! has been
compu‘lced, the algorithm carries on exactly the
same way as algorithm 1. If the set W, does not
contain the whole initial set I = (go, Xo), the same
procedure is repeated on the next identified path
72, Again, the algorithm terminates when either
there are no more initial states, for which a path
has not been found (I = (), or the K" has been
tested (j = K). Obviously, the discussion of the
previous section over semi-decidability applies in
this case as well.

Proposition 2. If algorithm 2 terminates on the
first condition then the target control problem is
feasible and the control sequence for (qo,x%o) €
I C I =(qo,Xp) is defined as:

i = (xl,Gi(xl 7l ) (11)

with G;(ﬂg7ﬂg+1) = pron(W;?-) n G(sz'vﬂg+1)7
while for the transition cost it holds:
m? —1

Fay= Y e(dad,) 1

i=1

Intuitively speaking, algorithm 2 “shrinks” the
reachable set W, along a path m such that, for
all trajectories in W/ there is no possibility to be
driven off target due to an uncontrollable transi-
tion. Therefore, the new control guards have to
be defined with respect to the “shrunk” reachable
set W,.

5. CONCLUSION

A solution to the target control problem on hybrid
automata has been presented. Based on reachabil-
ity analysis, algorithm 1 was derived which pro-
vides the necessary information for the design of
the control strategy. Also, our study was extended
to automata with uncontrollable transitions. Un-
controllability was employed to model uncertainty
stemming either from the environment or the
system itself. Algorithm 2 was the result of this
extension.

However, the implementation of the algorithms
was not among the objectives of this paper. Com-
putational issues are not addressed at all. Besides,

our aim was to present a neat solution to the
supervisory target control problem, emphasizing
on automata with uncontrollable transitions, and
to establish target control as a stand-alone prob-
lem rather than the dual of safety. Of course the
implementation of the algorithms and mainly the
computation of reachable sets is an open prob-
lem for further research. Moreover, optimal target
control, with respect to both continuous and dis-
crete dynamics, is another research direction that
should be investigated in a future work.
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