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1. INTRODUCTION

The last decade has witnessed considerable effort on
stabilization and control of stochastic nonlinear sys-
tems. One way of approaching these problems, with
an eye on robustness, is through a risk-sensitive for-
mulation. This approach has received much attention,
particularly in the light of the established relation-
ship between risk-sensitive stochastic control (RSSC)
problems and a particular class of stochastic zero-sum
differential games (Whittle, 1990; Başar and Bern-
hard, 1995; Fleming and McEneaney, 1992; Runolf-
sson, 1994), both involving the solution of a particu-
lar Hamilton-Jacobi-Bellman (HJB) equation. Solving
this HJB equation has presented a formidable task
when the system dynamics are nonlinear, and this dif-
ficulty has driven the need to look into nonlinear sys-
tems exhibiting special structures, which might lead to
constructive solutions of the HJB equation. One such
structure is the strict-feedback form, which has been
studied in (Pan and Başar, 1999). With some positive
cost term q(x) and no cost on control, a stochastic
backstepping tool was developed, as a generalization
of the backstepping methodology developed for de-
terministic systems (Krstić et al., 1995), to obtain
a controller that delivers any prespecified achievable
long-term average cost, while leading to closed-loop
system trajectories that are bounded in probability. In
a related work (Krstić and Deng, 1998), the stochastic

stabilization problem for strict-feedback systems has
been considered, and an inverse optimal control law
constructed using a quartic stochastic Lyapunov func-
tion, instead of the traditional quadratic one.

Noting that nonlinear systems in strict-feedback form
admit controllable linearizations, and cost functions
can admit quadratic approximations, a further devel-
opment in this area has been to construct control laws
that meet both a local design specification and a global
one, with also positive cost on control. In the specific
case when the diffusion coefficient does not depend
on the state, a stochastic backstepping design can
solve locally a related LEQG problem and globally
an inverse RSSC problem, as shown in (Başar and
Tang, 2000). This result can be viewed as a gener-
alization of those developed for deterministic strict-
feedback systems (Ezal et al., 2000; Ezal et al., 2001).

In this paper, we extend the previous results to en-
compass the larger class of strict-feedback stochastic
systems where the diffusion coefficients are allowed to
depend on the state. We construct a stabilizing state-
feedback controller with appealing global and local
optimality properties. The next section introduces the
design problem, along with the notions of global and
local optimality. In section 3, a state-feedback con-
troller is constructed recursively using a stochastic
backstepping tool. A numerical example illustrating
the design concludes the paper.
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2. PROBLEM FORMULATION

We consider the following stochastic nonlinear system
in strict-feedback form:

dx1 = [x2 + f1(x1)]dt +h′1(x1)dwt
...

...
dxn−1 = [xn + fn−1(x[n−1])]dt +h′n−1(x[n−1])dwt

dxn = [ fn(x[n])+b(x[n])u]dt +h′n(x[n])dwt

(1)

where x is the n-dimensional state, u is the scalar
control input, w is an r-dimensional standard vector
Wiener process, and x[k] := (x1, . . . ,xk)

′. The under-
lying probability space is the triple (Ω,F ,P). The
functions fi : IRi → IR,hi : IRi → IRr, i = 1, · · · ,n, and
b : IRn → IR are smooth, with fi(0) = 0,hi(0) > 0, and
b(x) > 0,∀x. u(t) = µ(x(t)), where µ ∈ U, the set of
all locally Lipschitz continuous state-feedback control
laws. To facilitate the exposition, we rewrite (1) as

dx = [ f (x)+G(x)u]dt +H(x)dwt (2)

with f ,G,H appropriately defined. Note that here
H(x) depends on the state x, instead of being a con-
stant as in (Başar and Tang, 2000).

Associated with system (1), we introduce an exponential-
of-integral cost function

J = limsup
T→∞

2
θT

lnE[exp(
θ
2

∫ T

0
q(x)+ r(x)u2dt)] (3)

where θ > 0 is the risk-sensitive parameter, and
q(·),r(·) are nonnegative-definite (n.n.d.) continuous
functions. One of our goals is to design µ∗ ∈ U so
as to achieve global inverse optimality, i.e. to attain
J∗ = infµ∈U J(µ).

Definition 1. A control law µ ∈ U is globally inverse
optimal (g.i.o.) for system (1) if it achieves the optimal
value J∗ of (3) for some q(·) and r(·), and some θ > 0.

From RSSC theory, given that there exists a g.i.o.
controller, then it can be expressed as

µ∗(x) = −
1
2

r−1(x)G′(x)V ′
x(x) (4)

where V is obtained as the solution of

J∗ = min
u

{

Vx(x) f (x)+Vx(x)G(x)u+q(x)+ r(x)u2

+
θ
4
|H ′(x)V ′

x(x)|
2 +

1
2

Tr[Vxx(x)H(x)H ′(x)]

}

= Vx(x) f (x)−
1
4

Vx(x)G(x)r−1(x)G′(x)V ′
x(x)

+
θ
4
|H ′(x)V ′

x(x)|
2 +q(x)+

1
2

Tr[Vxx(x)H(x)H ′(x)]

(5)

In addition to g.i.o. for the nonlinear system, we also
wish to achieve local optimality or sub-optimality for a
corresponding linearized system, with respect to some
n.n.d. quadratic functions x′Qx and Ru2 in place of q(·)
and r(·)u2 in (3). Toward this end, we rewrite (2) as:

dx = [Ax+ f̃ (x)+Bu+ G̃(x)u]dt
+(D+ H̃(x))dwt

(6)

where A = fx(0), B = G(0) =: ( 0 · · · 0 b0 )′ and
D = H(0) =: (d1 · · · dn)

′, with obvious definitions
for the perturbation terms f̃ , G̃ and H̃. Denote the
unperturbed or linearized versions of x and u by x` and
u`, respectively. Then, the linearized system is given
by

dx` = [Ax` +Bu`]dt +Ddwt . (7)

Note that (A,B) is a controllable pair by the structure
of these matrices. Consider now the LEQG problem
with dynamics (7) and cost function

J` = limsup
T→∞

2
θT

lnE[exp(
θ
2

∫ T

0
x′Qx+Ru2dt)] (8)

where (A,Q) is observable. From LEQG theory, since
(A,B) is controllable and (A,Q) is observable, there
exists a finite number θ∗

` , such that for each θ < θ∗
` ,

this risk-sensitive stochastic control problem admits
the unique solution

µ∗`(x`) = −R−1B′Px`, (9)

where P is the minimal p.d. solution of

A′P+PA−P
(

BR−1B′−θDD′
)

P+Q = 0. (10)

Furthermore, the optimal cost is J∗` = Tr(PDD′) and
A−R−1BB′P is Hurwitz.

Definition 2. Consider system (1) with its exponential-
of-integral cost function (3), where the following rela-
tionship holds:

r(0) ≤ R, qxx(0) ≤ Q. (11)

A g.i.o. control law µ ∈ U is locally sub-optimal
(l.s.o.) if for some R,Q satisfying (11), the linearized
control law µ` is optimal for the corresponding LEQG
problem (7)-(8). µ is locally optimal if µ` is optimal
for the LEQG problem, with equality holding in (11)
and J∗ attained.

3. INVERSE OPTIMAL CONTROLLER DESIGN

A g.i.o. state feedback controller is constructed in two
steps. First, the linearized system is considered, to
which a backstepping-based design is applied. Then,
this construction is extended to the original nonlinear
system.

3.1 Linear Optimal Design

The linear optimal controller design is essentially the
same as the one presented in (Başar and Tang, 2000;
Ezal et al., 2000). Consider the linear system (7). The
solution to (5) is

V`(x) = x′Px, J∗` = Tr(DD′P). (12)

Apply a coordinate transformation z = Lx based on a
Cholesky decomposition of P, P = L′∆L, where ∆ is
a diagonal matrix consisting of the positive constants



δi’s, and L is a lower triangular matrix. This brings the
GARE (10) into the form

Ā′∆+∆Ā−∆
(

BR−1B′−θD̄D̄′
)

∆+ Q̄ = 0 (13)

where Ā = LAL−1, D̄ = LD and Q̄ = (L′)−1QL−1.
An important observation here is that Ā has the same
structure as in the original coordinate system. This,
together with the diagonal structure of ∆, leads to the
important property that each principal minor of the
GARE is itself a GARE for the corresponding minor
of ∆. The transformed subsystem can be represented
by

dz[k] =
[

Ā[k]z[k] +(0 · · · zk+1)
′]dt + D̄[k]dwt

for 1 ≤ k < n, where z[k] = L[k]x[k]. This enables one to
proceed with backstepping by recursively generating
the value function

V̄`(z[n]) =
n

∑
i=1

δiz
2
i ≡ z′∆z, (14)

with V̄`i = z′[i]∆[i]z[i] being the value function for the
i-th subsystem. In view of GARE

Ā′
[i]∆[i] +∆[i]Ā[i] +θ∆[i]D̄[i]D̄

′
[i]∆[i] + Q̄[i] = 0, (15)

one arrives at the following expression for dV̄`i:

dV̄`i = 2z′[i]∆[i]D̄[i]dwt +
(

Tr[∆[i]D̄[i]D̄
′
[i]]

−θz′[i]∆[i]D̄[i]D̄
′
[i]∆[i]z[i] − z′[i]Q̄[i]z[i] +2ziδizi+1

)

dt.

When zi+1 = 0, V̄`i satisfies a HJB equation with cost
Ji = Tr[∆[i]D̄[i]D̄

′
[i]]. Proceed with the steps from i = 1

to n−1, and at the last step let zn = xn − ᾱn−1(z[n−1]).
The actual control emerges as xn+1 = b0u, and the
transformed system is now described by

dz(t) = (Āz(t)+Bul(t))dt + D̄dwt . (16)

This also leads to an expression for dV̄` as in the
solution of the LEQG problem:

dV̄` = 2z′∆D̄dwt +
(

Tr[∆D̄D̄′]−θz′∆D̄D̄′∆z
−z′Q̄z+2znδnb0u` +R−1b2

0δ2
nz2

n

)

dt

with the optimal control being µ̄l(z) = −R−1B′∆z and
cost J∗l = Tr[∆D̄D̄′]. When the controller ul = µ̄l(z) is
applied, the value function V̄` satisfies a transformed
HJB equation

V̄`zĀz−
1
4

V̄`z(BR−1B′−θD̄D̄′)V̄`z

+z′Q̄z+
1
2

Tr[V̄`zzD̄D̄′] = J∗l .
(17)

3.2 Nonlinear Inverse Optimal Design

Now, for the actual nonlinear system (2) in strict feed-
back form, we need to apply a different transformation
from the linear design. The reason is that with the
perturbation in (6) brought in, the second-order term
appears in the corresponding HJB equation and cannot
be eliminated by simply using the above backstepping

method. The transformation we use now is a nonlinear
mapping z = Φ(x), and this construction results in a
lower-triangular diffeomorphism. Moreover, Φ(x) =
Lx + Φ̃(x), where Lx is linear part of this diffeomor-
phism, and Φ̃(x) contains only the higher-order terms.
Combining with an appropriate choice of cost term
q̄(z), we are able to obtain a globally optimal control
law u = µ̄(z) with respect to a RSSC problem, where
the cost term is q̄(z)+ r̄(z)u2, similar to (3).

At the first step, define z1 = x1 and select V̄1 =
z′[1]∆[1]z[1] = δ1z2

1 as the value function. Then,

dz1 = [ā[1]z1 + f̂1(z1)+(x2 − ᾱ1(z1))]dt
+h̄′1(z1)dwt

(18)

where ā[1] = a[1] + ᾱ[1], f̂1(z1) = f̃1(z1) + α̂1(z1) and
h̄1(z1) = h1(z1). The virtual control law is ᾱ1(z1) =
ᾱ[1]z1 + α̂1(z1), with ᾱ[1] given by the locally optimal
backstepping design in previous subsection, and α̂1(·)
being an additional nonlinear term. Using GARE (15)
with i = 1, we have

dV̄1 = 2z1δ1h̄′1(z1)dwt +
(

[δ1d̄′
1d̄1]

−θz1δ1h̄′1(z1)h̄1(z1)δ1z1 − q̄1(z1)
+[δ1h̄′1(z1)h̄1(z1)−δ1d̄′

1d̄1]− z1Q̄[1]z1 + q̄1(z1)

+2z1δ1( f̂1(z1)+
θ
2

(

h̄′1(z1)h̄1(z1)− d̄′
1d̄1

)

δ1z1

+x2 − ᾱ1(z1)))dt.

Pick α̂1(z1) to cancel out the nonlinear terms:

α̂1(z1) = − f̃1(z1)−
θ
2
(h̄′1(z1)h̄1(z1)− d̄′

1d̄1)δ1z1,

and let c1 = α̂1(0) be the possible drift introduced by
the nonlinear transformation. At this particular stage,
c1 = 0, which has been included for clarity and ease
in the design at later stages. In addition, let z2 = x2 −
(ᾱ1(z1)− c1) and

q̄1(z1) = z1Q̄[1]z1 −
(

δ1h̄′1(z1)h̄1(z1)

−δ1d̄′
1d̄1

)

+2c1δ1z1 +2Q̄−1
[1] δ2

1c2
1.

(19)

We have the following expression for dV̄1:

dV̄1 = 2z1δ1h̄′1(z1)dwt +(J1 − q̄1(z1)
−θz1δ1h̄′1(z1)h̄1(z1)δ1z1 +2z1δ1z2

)

dt,
(20)

where J1 = δ1d̄′
1d̄1 +2Q̄−1

[1] δ2
1c2

1. Then, V̄1 satisfies the
HJB equation

V̄1z
(

Ā[1]z1 + f̂1(z1)
)

+
θ
4

V̄1zh̄
′
1(z1)h̄1(z1)V̄

′
1z

+q̄1(z1)+
1
2

Tr[V̄1zzh̄
′
1(z1)h̄1(z1)] = J1.

We repeat the preceding step from k = 1 to i−1, where
at the i-th step, we define

zi = φi(x[i]) = xi − (ᾱi−1(z[i−1])− ci−1)

with ᾱi−1(z[i−1]) = ᾱ[i−1]z[i−1] + α̂i−1(z[i−1]), ci−1 =
α̂i−1(0) being the possible non-zero drift, and select
the value function V̄i to be

V̄i = V̄i−1 +δiz
2
i = z′[i]∆[i]z[i].



Assume the following dynamics for z[i−1]:

dz[i−1] =
[

Ā[i−1]z[i−1] + f̂[i−1](z[i−1])

+
(

0 · · · xi − ᾱi−1(z[i−1])
)′

]

dt + H̄[i−1]dwt

and the following Itô differential for V̄i−1:

dV̄i−1 = 2z′[i−1]∆[i−1]H̄[i−1](z[i−1])dwt

+
(

Ji−1 − q̄i−1(z[i−1])+2zi−1δi−1zi

−θz′[i−1]∆[i−1]H̄[i−1]H̄
′
[i−1]∆[i−1]z[i−1]

)

dt,
(21)

with the choice of Ji−1 and q̄i−1 as

Ji−1 = Tr[∆[i−1]D̄[i−1]D̄
′
[i−1]]

+2c′[i−1]∆[i−1]Q̄
−1
[i−1]∆[i−1]c[i−1],

q̄i−1 = z′[i−1]Q̄[i−1]z[i−1] −
(

Tr[∆[i−1]H̄
′
[i−1]H̄[i−1]]

−Tr[∆[i−1]D̄
′
[i−1]D̄[i−1]]

)

+2c′[i−1]∆[i−1]z[i−1]

+2c′[i−1]∆[i−1]Q̄
−1
[i−1]∆[i−1]c[i−1]

where c[i−1] = ( c1 · · · ci−1 )′ is the drift vector due to
the nonlinear transformation. Then, letting

ᾱi(z[i]) = ᾱ[i]z[i] + α̂i(z[i])

be the virtual control law for xi+1, we get

dzi = [ā[i]z[i] + f̂i(z[i])+(xi+1

−ᾱi(z[i]))]dt + h̄′i(z[i])dwt
(22)

with ā[i] defined in the locally optimal design, and

f̂i(z[i]) = α[i]Ψ̂[i](z[i])+ f̃i(Φ−1
[i] (z[i]))+ α̂i(z[i])

−ᾱi−1,i−1ci−1 − ᾱ[i−1] f̂[i−1] −
∂α̂i−1

∂z[i−1]
f̂[i−1]

−
∂α̂i−1

∂z[i−1]

[

Ā[i−1]z[i−1] +(0 · · · zi − ci−1)
′
]

−
1
2

Tr

[

∂2α̂i−1

∂z2
[i−1]

H̄[i−1](z[i−1])H̄
′
[i−1](z[i−1])

]

h̄i = hi(Φ−1
[i] (z[i]))−

∂ᾱi−1

∂z[i−1]
H̄[i−1](z[i−1])

Here, the term Ψ̂[i](z[i]) = Φ−1
[i] (z[i])−L−1

[i] z[i] contains
the higher-order terms. After the above transforma-
tion, the z[i]-subsystem becomes

dz[i] =
[

Ā[i]z[i] + f̂[i](z[i])

+
(

0 · · · xi+1 − ᾱi(z[i])
)′

]

dt + H̄[i]dwt .
(23)

Noting that dV̄i = dV̄i−1 + d(δiz2
i ) and using (21), we

can select α̂i(z[i]) to cancel out the nonlinear terms,
i.e.,

α̂i(z[i]) = −α[i]Ψ̂[i](z[i])− f̃i(Φ−1
[i] (z[i]))+ ᾱi−1,i−1ci−1

+ᾱ[i−1] f̂[i−1](z[i−1])+
∂α̂i−1

∂z[i−1]
f̂[i−1](z[i−1])

+
∂α̂i−1

∂z[i−1]

[

Ā[i−1]z[i−1] +(0 · · · zi − ci−1)
′]

+
1
2

Tr

[

∂2α̂i−1

∂z2
[i−1]

H̄[i−1](z[i−1])H̄
′
[i−1](z[i−1])

]

−θ(h̄′i(z[i])H̄
′
[i−1](z[i−1])− d̄′

iD̄
′
[i−1])∆[i−1]z[i−1]

−
θ
2
(h̄′i(z[i])h̄i(z[i])− d̄′

i d̄i)δizi

In addition, pick ci = α̂i(0) and

zi+1 = xi+1 − (ᾱi(z[i])− ci)

as the nonlinear coordinate transformation for xi+1.
Select ∆q̄i(z[i]) such that

q̄i(z[i]) = q̄i−1(z[i−1])+∆q̄i(z[i])

= z′[i]Q̄[i]z[i] −
(

Tr[∆[i]H̄[i]H̄
′
[i]]−Tr[∆[i]D̄[i]D̄

′
[i]]

)

+2c′[i]∆[i]z[i] +2c′[i]∆[i]Q̄
−1
[i] ∆[i]c[i].

The form of q̄i(z[i]) is now different from the one in
(Başar and Tang, 2000) with extra terms brought in
because of the state dependent diffusion coefficient
H̄[i](z[i]) and the nonlinear transformation. Addition-
ally, it results (by necessity) in a much more complex
form of the nonlinear term α̂i(z[i]). These choices re-
sult in:

dV̄i = 2z′[i]∆[i]H̄[i](z[i])dwt +
(

Ji − q̄i(z[i])

−θz′[i]∆[i]H̄[i](z[i])H̄
′
[i](z[i])∆[i]z[i] +2ziδizi+1

)

dt,

where

Ji = Tr[∆[i]D̄[i]D̄
′
[i]]+2c′[i]∆[i]Q̄

−1
[i] ∆[i]c[i].

Then, V̄i satisfies a corresponding HJB equation

V̄iz
(

Ā[i]z[i] + f̂[i](z[i])
)

+
θ
4

V̄izH̄[i](z[i])H̄
′
[i](z[i])V̄

′
iz

+q̄i(z[i])+
1
2

Tr[V̄izzH̄[i](z[i])H̄
′
[i](z[i])] = Ji.

At the final step of the backstepping procedure, we let

zn = xn − (ᾱn−1(z[n−1])− cn−1)

with cn−1 = α̂n−1(0), and choose

V̄ (z) = V̄n−1(z[n−1])+δnz2
n = z′∆z (24)

as the value function. The dynamics of zn are given by
(22) with i = n, xn+1 = b̄(z)u and ᾱn = 0. Therefore,
we have obtained a coordinate transformation z =
Φ(x) through a nonlinear backstepping procedure, and
in this new coordinate system, the system is described
by

dz = (Āz+ f̂ (z)+ Ḡ(z)u)dt + H̄(z)dwt (25)

and the Itô differential of value function V̄ is

dV̄ = 2z′∆H̄(z)dwt +
{

Tr[∆D̄D̄′]+2c′[n−1]∆[n−1]·

·Q̄−1
[n−1]∆[n−1]c[n−1] −θz′∆H̄(z)H̄ ′(z)∆z

+r̄−1(z)b̄(z)δ2
nz2

n +∆q̄n(z)+Tr[δnh̄′n(z)h̄n(z)]
−q̄(z)−Tr[δnd̄′

nd̄n]− z′Q̄z+ z′[n−1]Q̄[n−1]z[n−1]

+2znδn

(

θ
[

h̄′n(z)H̄
′
[n−1] − d̄′

nD̄′
[n−1]

]

∆[n−1]z[n−1]

+
θ
2

[

h̄′n(z)h̄n(z)− d̄′
nd̄n

]

δnzn + f̂n(z)+ b̄(z)u

)

+(R−1b2
0 − r̄−1(z)b̄2(z))δ2

nz2
n

}

dt
(26)

To achieve g.i.o., we need to find some n.n.d. functions
q̄(z) and r̄(z) such that a form of HJB equation (5)
holds, with the control law being

µ̄(z) = −(1/2)r̄−1(z)Ḡ(z)V̄z = −r̄−1(z)b̄(z)δnzn.
(27)



The desired Itô differential dV̄ has the form

dV̄ = 2z′∆H̄(z)dwt +(J∗− q̄(z)
−θz′∆H̄(z)H̄ ′(z)∆z− r̄(z)−1b̄2(z)δ2

nz2
n

)

dt
(28)

Comparing (26) with (28), this yields

q̄(z) =
1
2

z′Q̄z+
1
2

∣

∣z+2Q̄−1∆c
∣

∣

2
Q̄ − (Tr[∆H̄H̄ ′

−∆D̄D̄′])+(r̄−1(z)b̄2 −R−1b2
0)δ

2
nz2

n −2znδnη̄(z)
(29)

where cn = − f̂n(0), c = ( c1 · · · cn )′, and

η̄(z) = f̂n(z)+ cn +θ
(

h̄′n(z)H̄
′
[n−1] − d̄′

nD̄′
[n−1]

)

·

·∆[n−1]z[n−1] +
θ
2
(h̄′n(z)h̄n(z)− d̄′

nd̄n)δnzn,

and r̄(z) > 0 is constructed such that q̄(z) is p.d. To
achieve l.s.o., we want to ensure that condition (11) is
satisfied in the z coordinate, which can be achieved by
a judicious choice of r̄(z). Since the leading term in
(29) is quadratic, we also need:

Assumption 1. For some K > 0, H̄(z) satisfies

Tr[∆H̄(z)H̄ ′(z)] ≤ Tr[∆D̄D̄′]+K|z|2. (30)

Further, Tr[∆H̄(z)H̄ ′(z)] is convex at the origin.

This technical assumption is necessary to bound the
variance of the state, hence to make the cost term q̄(·)
be nonnegative, and thus to ensure the stabilizability
of the system and existence of an optimal control law.
The construction of r̄(·) is of course not unique as
in the deterministic case. In fact, one possible design
here is the one given in (Ezal et al., 2000). We do not
give details here, but simply the main result.

Theorem 3. Consider the stochastic nonlinear system
(1) with coordinate transformation z = Φ(x) through
a nonlinear backstepping design. Let Assumption 1
hold, and Q̄ > 2KIn,R > 0. Then, there exist a n.n.d.
function q̄(z) and a strictly p.d. function r̄(z) satisfying
(11) in the z coordinate, such that with the control law
(27), the CL system is l.s.o. with respect to

J̄` = limsup
T→∞

2
θT

lnE[exp(
θ
2

∫ T

0
(z′Q̄z+Ru2)dt)],

(31)

where J∗` = Tr[∆D̄D̄′], and g.i.o. with respect to

J̄ = limsup
T→∞

2
θT

lnE[exp(
θ
2

∫ T

0
(q̄(z)+ r̄(z)u2)dt)],

(32)

where J∗ = J∗` + 2c′∆Q̄−1∆c. Furthermore, the CL
system trajectory is bounded in probability.

Proof. The proof for the theorem except for the last
statement on boundedness has already been outlined
in the preceding derivation. We note that the condition
V̄ (z) ≤ c1[q̄(z) + r̄(z)µ̄2(z)]+ c2 is satisfied for some
positive constants c1,c2, where V̄ (z) is the value func-
tion for the RSSC problem. It follows from (Pan and
Başar, 1999) that the transformed system (25) is stable
(bounded in probability).

Remark 4. By applying the stochastic backstepping
method introduced in this section, we are able to ob-
tain the state feedback control law (27) with desirable
global and local properties, with the only constraint
being condition (30) which restricts the growth of the
diffusion coefficient. This condition is expressed in the
transformed coordinate z, which is hard to check and
verify. Further extensions of current work would be to
relax this condition or convert it to the original coor-
dinate system, and relate it to the matching conditions
in nonlinear robust control problems.

Remark 5. The difference between the RSSC optimal
cost J∗ (with respect to system (1)) and the LEQG
optimal cost J∗` (with respect to the linearized system
(7)) is 2c′∆Q̄−1∆c, which is dependent on the dynam-
ics of the nonlinear system as well as the nonlinear
coordinate transformation Φ. A challenging question
is whether it is possible to design a control law such
that this difference is made as small as possible.

Remark 6. When the diffusion coefficient does not
depend on the state, and the additional nonlinear trans-
formation terms α̂i’s are homogeneous with their n-th
order derivatives, one can verify that Assumption 1 is
satisfied and c = 0. Thus in that case the constructed
control law is both g.i.o. and locally optimal.

4. EXAMPLE

Consider the system:

dx1 = (0.25x1 −0.00007x3
1 + x2)dt +0.1x1dw1 +dw2

dx2 = (0.25x1 + x2
1 +0.25x2 + x2

2 +u)dt
+dw1 −0.1x1dw2

The linearized system is

dx1 = (0.25x1 + x2)dt +dw2

dx2 = (0.25x1 +0.25x2 +u)dt +dw1

with quadratic cost functional

J1 = limsup
T→∞

2
θT

lnE[exp(
θ
2

∫ T

0

3
4
(x2

1 + x2
2)+4u2dt)]

In this case θ∗
` = 0.18. Picking θ = 0.018, the relevant

solution of (10) is

P =

[

4.41258 4.81184
4.81184 7.77023

]

.

The linear optimal controller is

u = −B′Px = −4.81184x1 −7.77023x2. (33)

If we apply this linear controller to the full-order non-
linear system, the CL system will not be globally sta-
ble. Now following the steps of the earlier derivation,
we first rewrite P as P = L′∆L,

L =

[

1 0
0.619267 1

]

, ∆ =

[

1.43277 0
0 7.77023

]

,

and use the linear transform z = Lx, that is z1 = x1,
z2 = x2 + 0.619267x1. In the new coordinate system,



(33) is now expressed as u = −B′∆z = −7.77023z2.
Carrying out the nonlinear part of the design, we have
α̂1 = 0 which leads to the same coordinate transfor-
mation as

z = Φ(x) =

[

x1

0.619267x1 + x2

]

.

The nonlinear system is now described by

dz1 = [−0.3693z1 −0.0000716z3
1 + z2]dt

+0.1z1dw1 +dw2

dz2 = [(−0.13349−1.2385z2)z1 +1.3835z2
1

+0.8693z2 + z2
2 −0.00004436z3

1 +u]dt
+(1+0.06193z1)dw1 +(0.6193−0.1z1)dw2.

Note that c1 = c2 = 0, and Assumption 1 is satisfied,
i.e. with K = 0.25, Tr[∆H̄(z)H̄(z)′ −∆D̄D̄′] ≤ K|z|2.
Let

V̄ (z) = z′∆z = 1.43277z2
1 +7.77023z2

2.

Then, using Itô’s formula as well as GARE (13), we
obtain a form of (28), i.e.

dV̄ (z) = (0.28655z2
1 +15.5405z2 +0.96237z1z2)dw1

+(2.8655z1 −1.554z1z2 +9.6237z2)dw2

+[12.1828−0.00021z4
1 −0.0006894z3

1z2

−(120.753r̄−1(z)−13.5088)z2
2 +15.0519z3

2]dt
+[15.5405z3

2 +(−0.93632+21.5001z2)z
2
1

+(0.791z2 −19.2474z2
2)z1]dt

The nonlinear feedback control law is given by

u1 = µ̄(z) = −7.77023r̄−1(z)z2, (34)

or, in the original coordinate system,

u1 = −7.77023r−1(x)(0.6193x1 + x2), (35)

where r(x) = r̄(Φ(x1)). This controller is globally
optimal for cost function (32), where

q̄(z) = (−14.3441+60.3764r̄−1(z))z2
2 −15.5405z3

2
−0.008353(−0.04259+ z2)(2573.97+ z2)z

2
1

−0.0006894z3
1z2 −0.9289z1z2 +19.2474z1z2

2
r̄−1(z) = 0.25+[−0.1088z1 +2.4303z2

1
+0.0001559z3

1 +0.2574z2]+

As shown in Fig. 1, q̄(z) is a p.d. function, and its
second order term at the origin is indeed greater than
Q̄. Now, with Q̄ > 2KI2 and from Theorem 1, the
controller (35) achieves both l.s.o. and g.i.o., and the
CL system is bounded in probability.

5. CONCLUSION

In this paper, we have studied the RSSC problem
for strict-feedback stochastic nonlinear systems and
constructed feedback control laws that are globally
inverse optimal and locally suboptimal. The con-
trol laws further lead to system trajectories that are
bounded in probability. These results hold under cer-
tain growth conditions on the system nonlinearities,
which are expressed in a new coordinate system driven
by the backstepping methodology. Further research is
needed to relax these conditions and express them in
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the original coordinate system, as well as to obtain
similar results for stochastic systems that are not in
strict feedback form.
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