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1. INTRODUCTION

In resent decade the problem of output asymptotic
stability or IOS for nonlinear systems was in the
center of attention (Fradkov, et al., 1999; Ingalls and
Wang, 2001; Rumyantsev and Oziraner, 1987;
Sontag and Wang, 1997b; Sontag and Wang, 1999;
Sontag and Wang, 2001; Vorotnikov, 1998). Fre-
quently, in practical tasks the requirement of full
state stabilization goes away from natural essence of
the system, in such case partial stability (stability
with respect to part of state variables) is appeared.
Another case is the output stabilization of the system
which has output-to-state stability (OSS) property or
input-output-to-state stability (IOSS) property
(Sontag and Wang, 1997a), then solving task of out-
put asymptotic stabilization, one solves task of full
state stabilization or input-to-state stabilization re-
spectively. This supposition is also valid for output-
to-input stable systems (strong minimum phase, see
(Liberzon, et al., 2000)).

In the second section all notations and definitions are
introduced. Control construction for output stability
is presented in the third section. The proofs of all
results are presented in the Appendix.

2. DEFINITIONS AND FORMULATIONS

Let us consider the following nonlinear dynamic
system

( )uxfx ,=& , ( )xhy = , (1)
where nR∈x  is state space vector; mR∈u  is input
vector; pR∈y  is output vector; f  and h  are locally
Lipschitz continuous vector fields, ( ) 00 =h ,
( ) 00,0 =f . Euclidean norm will be denoted as x ,

and [ ]tt ,0
u  denotes the mL∞  norm of the input ( ( )tu

is measurable and locally essentially bounded func-
tion mR→I:u , where I  is a subinterval of R ,
which contains the origin; if  interval I  does not
specified, then 0≥=RI ):

[ ] ( ) [ ]{ }TtttessTt ,,sup 0,0
∈= uu ,

if ∞+=T  then we will write simple u . For initial
state 0x  and input u  let  ( )uxx ,, 0t  be the unique
maximal solution of (1) (we will use notation ( )tx , if
all other arguments of solution are clear from con-
text; ( ) ( )( )uxxhuxy ,,,, 00 tt = ), which is defined on
some finite interval [ )T,0 ; if ∞+=T  for every initial
state 0x  and essential bounded input u , then system
is called forward complete. There exists another one
strictly weaker property of system (1), which is
closely connected with forward completeness, system
(1) has unboundedness observability (UO) property,
if for each state 0x  and input u  such that ∞+<T
necessarily

 ( ) ∞+=
→

uxy ,,suplim 0t
Tt

.

In other words it is possible to observe any unbound-
edness of the state. The contrapositive statement of
this property says that, if 

[ )
( ) ∞+<

∈
t

Tt
y

,0
sup , then ( )Tx

is defined, so boundedness of UO output means for-
ward completeness. The necessary and sufficient
conditions for forward completeness and UO proper-
ties were investigated in (Angeli and Sontag, 1999).

As usually, continuous function 00: ≥≥ →σ RR  be-
longs to class K  if it is strictly increasing and
( ) 00 =σ ; additionally it belongs to class ∞K  if it

also radially unbounded; and continuous function
000: ≥≥≥ →×β RRR  is from class LK , if it is from

class K  on the first argument for any fixed second,
and strictly decreasing to zero by the second argu-
ment for any fixed first one.

An example of the systems, which admit UO prop-
erty is OSS systems (Sontag and Wang, 1997a), i.e.
for all nR∈0x  and all Ω∈Mu  (input u  lies in some
compact set mR⊂Ω , and signal Ω→I:u  belongs to
class measurable and locally essentially bounded
function ΩM )
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( ) ( ) [ )( )Ttt ,000 ,,, yxuxx γ′+β′≤

holds for all [ )Tt ,0∈  for some functions LK∈β′

and K∈γ′ . If the last inequality is satisfied for all
mR∈u , then such property is named as uniformly

OSS or UOSS for short. In (Krichman, et al., 2001)
was shown, that OSS property is equivalent to global
asymptotic stability modulo output (GASMO):

( ) ( )( )uxyuxx ,,,, 00 tt ν≥ , [ )Tt ~,0∈  ⇒

( ) ( )tt ,,, 00 xuxx η≤ , [ )Tt ~,0∈ ,

for all nR∈0x , all Ω∈Mu , TT <~  and some func-
tions LK∈η  and ∞∈ν K . A component of GASMO
property is global stability modulo output (GSMO)
property:

( ) ( )( )uxyuxx ,,,, 00 tt ν≥ , [ )Tt ~,0∈  ⇒

( ) ( ) [ )( ){ }Tt ~,000 ,max,, uxuxx µµ≤ , [ )Tt ~,0∈ ,

here functions ∞∈ν K , K∈µ  and nR∈0x , mR∈u ,

TT <~ ; if Ω∈Mu , then term [ )( )T~,0uµ  can be
dropped in the last inequality. It is worth to note, that
GSMO property and boundedness of output ensure
forward completeness of system (the same as UO).

The generalization of OSS property for system (1)
with inputs from not necessary compact set is IOSS
property (Krichman, et al., 2001; Sontag and Wang,
1997a), i.e. for all nR∈0x  and all mR∈u

( ) ( ) [ )( ) [ )( )TTtt ,02,0100 ,,, yuxuxx γ+γ+β′′≤

holds for all [ )Tt ,0∈  for some functions LK∈β′′

and K∈γγ 21, . The main properties of dynamic sys-
tems under consideration in this paper are the fol-
lowing.

D e f i n i t i o n  1  (Ingalls and Wang, 2001; Sontag
and Wang, 1997b). A UO system (1) is:
• IOS, if there exist LK∈β  and K∈γ  so that for all

nR∈0x  and all u , and all 0≥t :
( ) ( ) ( )uxuxy γ+β≤ tt ,,, 00 ; (2)

• OLIOS, or output-Lagrange input-to-output stable
if it is IOS and additionally the output-Lagrange
(OL) stability property holds:

( ) ( )( ) ( ){ }uxhuxy σσ≤ ,max,, 00t , K∈σ , (3)
for all nR∈0x  and all u  , and all 0≥t . ■

In work (Sontag and Wang, 1999) also several output
stability properties were introduced, which were de-
scribed for forward complete system (1) in (Sontag
and Wang, 1999) and for systems with bounded-
input-bounded-state (BIBS) property in (Sontag and
Wang, 1997b). The BIBS property means that for all

nR∈0x , all u  , and all 0≥t
( ) ( ) ( ){ }uxuxx ϑϑ≤ ,max,, 00t

holds for some function K∈ϑ . If ( ) xxh = , then OL
and BIBS properties are equivalent.

D e f i n i t i o n  2  (Ingalls and Wang, 2001). For
system (1), a smooth function V  and a function

0: ≥→λ RRn  are called respectively an IOS-
Lyapunov function and auxiliary modulus if there
exist ∞∈αα K21,  so that expression

( )( ) ( ) ( )xxxh 21 α≤≤α V (4)
holds and there exist K∈χ  and LK∈α3  such that
  ( ) ( )ux χ>V  ⇒ ( ) ( ) ( ) ( )( )xxuxfx λα−≤ ,, 3 VVD (5)
for all nR∈0x  and all mR∈u , and there exist some

K∈δ  such that for any 0≥T
( )( ) ( )( )ttV uuxx χ>,, 0 , [ )Tt ,0∈  ⇒
( )( ) ( ) ( ){ }uxuxx δδ≤λ ,max,, 00t .

The function V  is called an OLIOS-Lyapunov func-
tion if it is an IOS-Lyapunov function, and in addi-
tion, inequality (4) can be strengthened to

( )( ) ( ) ( )( )xhxxh 21 α≤≤α V , (6)
for all nR∈x . ■

In (Sontag and Wang, 2001) IOS- and OLIOS-
Lyapunov functions were introduced for BIBS sys-
tem (1). In this way one can use x  as auxiliary
modulus λ  (see Remark 3 in (Ingalls and Wang,
2001)) and inequality (5) can be rewritten as follows:

( ) ( )ux χ>V  ⇒ ( ) ( ) ( )( )xxuxfx ,, 3 VVD α−≤ .

T h e o r e m  1  (Ingalls and Wang, 2001). Suppose
that system (1) is UO.
(1) The following are equivalent for the system:

– it is IOS;
– it admits an IOS-Lyapunov function;

(2) The following are equivalent for the system:
– it is OLIOS;
– it admits an OLIOS-Lyapunov function. ■

Assume that inputs u  take values in compact set
mR⊂Ω , in this case there are other characterizations

of output stability.

D e f i n i t i o n  3  (Ingalls and Wang, 2001; Sontag
and Wang, 2001). A forward complete system (1)
with inputs  from ΩM  is:
• UOS, or uniformly output stable if there exist

LK∈β  and K∈γ  so that for all nR∈0x  and all

Ω∈Mu , and all 0≥t :
( ) ( )tt ,,, 00 xuxy β≤ ; (7)

• OLUOS, or output-Lagrange  uniformly output
stable if it is UOS and additionally the uniformly
output-Lagrange (UOL) stability property holds:

( ) ( )( ){ }00 max,, xhuxy σ≤t , K∈σ , (8)
for all nR∈0x  and all Ω∈Mu , and all 0≥t . ■

In work (Ingalls and Wang, 2001) OLUOS property
was named as output-Lagrange output uniformly
global asymptotic stable and its Lyapunov charac-
terization was given.



D e f i n i t i o n  4  (Ingalls and Wang, 2001; Sontag
and Wang, 2001). For system (1), a smooth function
V  and a function 0: ≥→λ RRn  are called respec-
tively an UOS-Lyapunov function and auxiliary
modulus if there exist ∞∈αα K21,  so that (4) holds
and there exist K∈χ  and LK∈α3  such that

( ) ( ) ( ) ( )( )xxuxfx λα−≤ ,, 3 VVD (9)
is satisfied for all nR∈0x  and all Ω∈Mu , and λ  is
locally Lipschitz on the set ( ){ }0: >xx V  and

( )( ) ( )00 ,, xuxx λ≤λ t . The function V  is called an
OLUOS-Lyapunov function if it is an UOS-Lyapunov
function, and in addition, inequality (4) can be
strengthened to (6). ■

T h e o r e m  2  (Ingalls and Wang, 2001; Sontag and
Wang, 2001). Suppose that system (1) is forward
complete and Ω∈Mu .
(1) The following are equivalent for the system:

– it is UOS;
– it admits an UOS-Lyapunov function;

(2) The following are equivalent for the system:
– it is OLUOS;
– it admits an OLUOS-Lyapunov function. ■

In work (Ingalls and Wang, 2001) only OLUOS case
was considered. Obvious generalization of results in
(Ingalls and Wang, 2001) and (Sontag and Wang,
2001) gives theorem 2.

Problem of output stability of nonautonomous system
( )t,xfx=& , (10)

where f  is continuous locally Lipschitz vector field,
was investigated in (Fradkov, et al., 1999;
Rumyantsev and Oziraner, 1987; Vorotnikov, 1998).
The sufficient Lyapunov characterization was given
as follows:  differential positive definite and radially
unbounded function V  provides output global as-
ymptotic stability for forward complete system (10),
if (6) holds and for all nR∈x

( )yα−≤V& , (11)
where continuous function α  is positive definite. It
is clear that from (11) follows (9) (one can choose

( ) ( ) ( )rsrs +α=α 1/,3 ) and moreover inequality (11)
gives only sufficient condition for output stability:
there exist output global asymptotic stable systems,
which admit Lyapunov characterization in form (9)
and fail in (11) (see Remark 2.2 in (Sontag and
Wang, 2001)).

To approach more closely to this work, let us con-
sider the task of asymptotic stabilization of system
(1) without output function. For solving this problem
one can use integral controller (the reasons are men-
tioned in (Jiang and Mareels, 2000), see also refer-
ences therein), common system can be described by
differential equations:

( )
,~

;,,
uu

vuxfx
=
=
&
& (12)

where u~  is new control that should be synthesized;
mR∈v  reflects unknown disturbances in the right

hand side of integral controller, signal ( )tv  is meas-
urable and locally essentially bounded function of
time. If v  is absent, then task global asymptotic sta-
bilization of (1) is equivalent to UOS stabilization of
(12) for output xy = . In the presence of disturbance
v  this task can be formalized as IOS stabilization of
(12). Note that (12) is affine in new control u~ , so
this problem reduces to task of UOS or IOS control
synthesis for affine system:

( ) ( )uxGvxfx += ,& ; ( )xhy = , (13)
which will be considered in the next section.

3. MAIN RESULTS

First of all note that GSMO property in some sense
lies between UO and BIBS properties:

P r o p o s i t i o n  1 . For system (1) the following
implications hold:
1. BIBS ⇒ GSMO ⇒ UO;
2. BIBS ⇔ GSMO & Output boundedness (A1). ■

According to this result it is possible to change the
requirement of UO property in statements of theo-
rems 1 and 2 to GSMO property, that allows to spec-
ify auxiliary modulus function:

P r o p o s i t i o n  2 . Suppose that system (1) is
GSMO and mR∈u .
(1) The following are equivalent for the system:

– it is IOS;
– it admits an IOS-Lyapunov function ( ) xx =λ ;

(2) The following are equivalent for the system:
– it is OLIOS;
– it admits an OLIOS-Lyapunov function
( ) xx =λ .

Suppose that system (1) is GSMO and Ω∈Mu .
(3) The following are equivalent for the system:

– it is UOS;
– it admits an UOS-Lyapunov function ( ) xx =λ ;

(4) The following are equivalent for the system:
– it is OLUOS;
–it admits an OLUOS-Lyapunov function
( ) xx =λ . ■

The result of proposition 2 is a special case of theo-
rem 1 and 2. According to proposition 1 the GSMO
systems are UO, but converse is in general false, so
proposition 2 deals with more restrictive class of
system (1). However, in this case the upper bound of
derivative of IOS–UOS Lyapunov function V  has
more constructive form like in (Sontag and Wang,
2001), where BIBS systems were considered. This
advance will be demonstrated now during control
synthesis phase.

It is well known "universal" formula for full state



global asymptotic stabilization of affine system
(Sontag, 1989) and input-to-state stabilization or in-
tegral input-to-state stabilization of (13) (Liberzon, et
al., 2001). First of all let us consider the case then
( ) 0≡tv  for all 0≥t

( ) ( )uxGxfx +=& ; ( )xhy = . (14)
In (Lin and Sontag, 1995) was presented "universal"
formula for compact set stabilization and for
bounded/positive control stabilization. The task of
output asymptotic stabilization can be considered as
task of asymptotic stabilization of non compact set

( ){ }0: == xhxZ . The problem of "universal" control
construction is closely connected with task of control
Lyapunov function (CLF) choosing. The definition of
CLF with respect to closed invariant not necessary
compact set was introduced in (Lin and Sontag,
1995). As discussed in example 4.2 (Lin and Sontag,
1995) this definition of CLF does not suit well for
case of non compact set. Hence, here we present an-
other one definition of UOS CLF.

D e f i n i t i o n  5 . An UOS CLF for system (14) and
control mR⊆∈Uu  is a differentiable function

0: ≥→ RRV n  satisfying:
1. there exist some ∞∈αα K21,  such that for all

nR∈x  (4) holds.
2. for all nR∈x , ( ) 0≠xh

( ) ( ){ } 0inf <+
∈

uxbx
u

a
U

, (15)

( ) ( ) ( )xfxx Va ∇= , ( ) ( ) ( )xGxxb V∇= .
If instead (4) such function V  admits condition (6),
then it is an OLUOS CLF for system (14) with re-
spect to control in U .
Function V  is said to satisfy small control property
with respect to output if for any 0>ε  there is an

0>δ  such that, for any ( ) 0≠xh , ( ) δ<xh  there
exists a control U∈u  with ε<u  and
( ) ( ) 0<+ uxbxa . ■

Note that hard verified condition (15) can be changed
to another one:

( ) 0≡xb  ⇒ ( ) 0<xa  for all nR∈x , ( ) 0≠xh .(16)
The condition (16) forms the main restriction on
UOS CLF for system (14). This work considers the
same formula for "universal" control as usually
(Sontag, 1989):

( ) ( )( ) ( )Ta xbxbxu 2,κ= , (17)

where ( )
r

rssrs
22

, ++
−=κ . According to fact, that

UOS property generalizes global asymptotic stability
property, then following theorem develops sufficient
part of another one from (Sontag, 1989).

T h e o r e m  3 . If function V is UOS (OLUOS) con-
trol Lyapunov function (it admits (4) (or (6) in
OLUOS case) and (16) conditions) satisfying small
control property with respect to output and controls

in mR , then control (17) is continuous on nR  and it
provides for GSMO system (14),(17) UOS (respec-
tively OLUOS) property. ■

Indeed, if one considers special case ( ) xxh = , then
GSMO property can be dropped (boundedness of all
state immediately follows from the fact, that 0≤V&
for all nR∈x ) and all conditions of theorem 4 coin-
cide with corresponded one from (Sontag, 1989). The
smoothness property can be obtained with assump-
tion that functions f , G  and V  are smooth. As re-
marked above, it seems that GSMO property is rather
restrictive requirement for the system. The important
class of GSMO system (14) is uniformly OSS system
(14), i.e. such kind of the system, that for any input

mR∈u  OSS property holds.

C o r o l l a r y  1 . If function V is UOS CLF satisfy-
ing small control property with respect to output and
controls in mR , then control (17) is continuous on

nR  and it provides for UOSS system (14) global as-
ymptotic stability property with respect to origin. ■

It is well known results of global asymptotic stabili-
zation of affine system with input-to-state stable in-
ternal dynamic (Isidori, 1989; Isidori, 2000). As
pointed out in (Liberzon, et al., 2000), such systems
are UOSS, if they have globally defined normal form
(for stabilization also relative degree property is nec-
essary (Isidori, 1989; Isidori, 2000)). In the corollary
neither of this conditions are not needed.

Now let us consider the case ( ) 0≠tv  for all 0≥t .
To specify conditions and "universal" control for-
mula as (17), which provide IOS property for con-
trolled system, we should look for suitable CLF for-
mulation. One of them is as follows.

D e f i n i t i o n  6 . An IOS CLF for system (13) and
control mR⊆∈Uu  is a differentiable function

0: ≥→ RRV n  satisfying:
1. there exist some ∞∈αα K21, , such, that for all

nR∈x  (4) holds.
2. there exists some function ∞∈χ K , such, that

( ) ( )vx χ>V  ⇒ ( ) ( )xvx ψ≤,a , 0C∈ψ
and for all nR∈x , ( ) 0≠xh

( ) ( ){ } 0inf <+ψ
∈

uxbx
u U

,

where ( ) ( ) ( )vxfxvx ,, Va ∇= , ( ) ( ) ( )xGxxb V∇= .
If instead (4) such function V  admits condition (6),
then it is an OLUOS CLF for system (13) with re-
spect to control in U .
Function V  is said to satisfy small control property
with respect to output if for any 0>ε  there is an

0>δ  such that, for any ( ) 0≠xh , ( ) δ<xh  there
exists a control U∈u  with ε<u  and
( ) ( ) 0<+ψ uxbx . ■



The condition 2 of the last definition can be rewritten
as follows:

( ) ( )vx χ>V  ⇒ ( ) ( )xvx ψ≤,a , 0C∈ψ ; (18)
    ( ) 0=xb  ⇒ ( ) 0<ψ x  for all nR∈x , ( ) 0≠xh .(19)
So, expressions (18), (19) are the main requirements
for IOS or OLIOS CLF. The "universal" control for-
mula is the same as (17):

( ) ( )( ) ( )Txbxbxu 2,ψκ= , (20)
where κ  coincides with another one from (17).

T h e o r e m  4 . If function V is IOS (OLIOS) control
Lyapunov function (it admits (4) (or (6) in OLUOS
case) and (18), (19) conditions) satisfying small
control property with respect to output and controls
in mR , then control (20) is continuous on nR  and it
provides for GSMO system (13),(20) IOS (respec-
tively OLIOS) property. ■

It is worth to note, that as in theorem 3, if ( ) xxh = ,
then GSMO property is unnecessary and this theorem
is very closely connected with another one from
(Liberzon, et al., 2001). The class of systems, which
admits GSMO property in this task, includes IOSS
systems and the following corollary can be proposed.

C o r o l l a r y  2 . If function V is IOS control Ly-
apunov function satisfying small control property
with respect to output and controls in mR , then con-
trol (20) is continuous on nR  and it provides for
IOSS system (13) the input-to-state stability property
with respect to origin. ■

4. CONCLUSION

In the paper the definitions of UOS and IOS control
Lyapunov function are proposed. The "universal"
control formulas, that ensures for the system dis-
cussed properties, are presented. The applying of
those obtained formulas for global asymptotic stabi-
lization of UOSS systems and input-to-state stabili-
zation of IOSS systems is carried out. The computer
simulation confirms the all claims of theoretical part
of the work.
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A P P E N D I X

P r o o f  o f  p r o p o s i t i o n  1 . It is clear, that
BIBS property provides GSMO for any function ν .

The GSMO system state space variables can not in-
crease infinitely while output function stays bounded,



hence we can "observe" any unboundedness of the
state. Conversely if output of GSMO system is
bounded, i.e. for all nR∈0x , all u  there is a
( ) 00 >ς x , so that

    ( ) ( ) ( ){ }uxuxy ςς≤ ,max,, 00t , 0≥t , K∈ς , (A1)
then state is also bounded (from UO property follows
forward completeness). Indeed, there are two cases:
1. ( ) ( )( )uxyuxx ,,,, 00 tt ν≥ , [ )Tt ~,0∈  ⇒

( ) ( ) [ )( ){ }Tt ~,000 ,max,, uxuxx µµ≤ , [ )Tt ~,0∈ ,

for all nR∈0x , all u  and ∞+<T~ ;

2. For all nR∈0x , all u , [ )Tt ~,0∈  and ∞+<T~ :
( ) ( )( ) ( ) ( ){ }uxuxyuxx ςνςν≤ν< oo ,max,,,, 000 tt .

Hence system possesses BIBS property for
( ) ( ) ( ){ }sss τνµ=ϑ o,max . ■

P r o o f  o f  p r o p o s i t i o n  2 . Let us consider
statements (1) and (2). Inequalities (4), (5) ensure
that IOS (OLIOS) Lyapunov function V  and output
are bounded:

( )( ) ( )( )ttV ux χ>  ⇒

 ( ) 0≤tV&  and ( ) ( )02
1

1 xy αα≤ − ot , [ )Ttt ~,0∈
or

( )( ) ( )( )ttV ux χ≤  ⇒ ( ) ( )uy χα≤ − o1
1t , [ )Ttt ~,0∈ ,

where ∞+≤Tt ~,0 . It means output boundedness
property as (A1) with function

( ) ( ) ( ){ }sss 2
1

1
1

1 ,max ααχα=ς −− oo .
The GSMO and (A1) properties provide BIBS prop-
erty for system (1) (proposition 1) and norm of state
space vector x  can be chosen as auxiliary modulus.
If instead (4) the condition (6) is satisfied, then the
last one inequality can be rewritten as follows:

( )( ) ( )( )ttV ux χ>  ⇒

( ) 0≤tV&  and ( ) ( )( )02
1

1 yy αα≤ − ot , [ )Ttt ~,0∈ ,
so, OL stability property additionally holds. The parts
3 and 4 of the proposition can be proved the same. ■

P r o o f  o f  t h e o r e m  3 . In control (17) function
( )rs,κ  is a root of the polynomial

( ) rpsprpF −+= 22 .
The root ( )rs,κ  rushes to zero, then r  tends to zero
for non positive s , and provides negativity property
for derivative of the polynomial:

( ) ( )sprpdFdpF +==′ 2 ,

( )( ) 222, rsrsF +−=κ′ .

Note that with substitution ( )xas =  and ( ) 2xb=r
derivative ( )( )⋅⋅κ′ ,5.0 F  coincides with time deriva-
tive of function V  for system (14), (17):

( ) ( ) ( ) ( )( ) ( )
( ) ( ) .

,
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=κ−=

a
aaV T&

(A2)

The condition (16) with small control property with
respect to output ensure that if ( ) 2xb=r  goes to

zero then ( )xas =  is not positive and control (17) is
continuous. Inequality (A2) means that condition

0≤V&  holds for all nR∈x  and all 0≥t , according to
(4) and results from (Fradkov, et al., 1999;
Rumyantsev and Oziraner, 1987) this claims output
boundedness property as (A1):

( ) ( )( )02
1

1 xy αα≤ − ot  for all [ )Tt ,0∈ ;
for OLUOS case from (6) additionally UOL property
(8) can be obtained:

( ) ( )( )02
1

1 yy αα≤ − ot  for all [ )Tt ,0∈ ,
here T  defines time interval of solution (14), (17)
definition. The boundedness of output ensures for
GSMO system (14) forward completeness and con-
sequently ∞+=T . Form (A2) and (16) also follows
that

0<V&  for all nR∈x , ( ) 0≠xh .
In Lemma A.5 (Sontag and Wang, 2001) was proven,
that in this case more stronger inequality holds for
the system:

( )( )xx ,VV ϖ−≤&  for all nR∈x , LK∈ϖ .
Hence, desired conclusion immediately follows from
proposition 2 and system (14), (17) is UOS and (7)
holds. The OLUOS case can be proved in the same
way (UOL property was obtained above). ■

P r o o f  o f  c o r o l l a r y  1 . It is clear, that UOSS
system (14) grants OSS property for system (14),
(17) and from OSS property follows GSMO. There-
fore theorem 3 can be applied and system (14), (17)
is UOS. In (Sontag and Wang, 1997a) was men-
tioned, that OSS and UOS imply global asymptotic
stability. ■

P r o o f  o f  t h e o r e m  4 . The continuity property
of control (20) can be proved in the same line as in
he theorem 3. While ( ) ( )ux χ>V  the time deriva-
tive of function V  for system (13), (20) has form

( ) ( ) ( ) ( )( ) ( )
( ) ( ) .

,,
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xbx

xbxbxxbvx

+ψ−=

=ψκ−= TaV&
(A3)

Form (A3) follows that
( ) ( )ux χ>V  ⇒ 0<V&  for all nR∈x , ( ) 0≠xh .

In Lemma A.5 (Sontag and Wang, 2001) was proven,
that in this case more stronger inequality holds for
the system:

( ) ( )ux χ>V  ⇒ ( )( )xx ,VV ϖ−≤&

for all nR∈x , LK∈ϖ . Hence, desired conclusion
immediately follows from proposition 2 and system
(13), (17) is IOS and inequality (2) holds. The
OLIOS case can be proved in the same way (condi-
tion (3) follows from boundedness property of func-
tion V  (A3)). ■

P r o o f  o f  c o r o l l a r y  2 . If system (13), (20) is
IOSS, then it has also GSMO property and theorem 4
can be applied. In proposition 3.1 of (Jiang, et al.,
1994) was shown, that IOS and IOSS system is in-
put-to-state stable. ■


